
Leaky DNN: Stealing Deep-learning Model Secret
with GPU Context-switching Side-channel

Junyi Wei∗, Yicheng Zhang†, Zhe Zhou∗, Zhou Li† and Mohammad Abdullah Al Faruque†
∗Fudan University, Email: wjygerald@gmail.com, zhouzhe@fudan.edu.cn

†University of California, Irvine, Email: {yichez16, zhou.li, alfaruqu}@uci.edu

Abstract—Machine learning has been attracting strong inter-
ests in recent years. Numerous companies have invested great
efforts and resources to develop customized deep-learning models,
which are their key intellectual properties. In this work, we
investigate to what extent the secret of deep-learning models can
be inferred by attackers.

In particular, we focus on the scenario that a model developer
and an adversary share the same GPU when training a Deep
Neural Network (DNN) model. We exploit the GPU side-channel
based on context-switching penalties. This side-channel allows us
to extract the fine-grained structural secret of a DNN model,
including its layer composition and hyper-parameters.

Leveraging this side-channel, we developed an attack prototype
named MoSConS, which applies LSTM-based inference models to
identify the structural secret. Our evaluation of MoSConS shows
the structural information can be accurately recovered. There-
fore, we believe new defense mechanisms should be developed to
protect training against the GPU side-channel.

Index Terms—Deep-learning; GPU; Side-channel;

I. INTRODUCTION

In recent years, technologies driven by machine-learning,

especially deep learning, have been gaining strong momentum

from the research community and industry. Those technologies

have shown promises and early success in transforming the

application domains, like computer vision [54] and speech

recognition [64]. Driven by this wave, numerous companies

have been devoting human and computing resources to develop

customized machine-learning models, which have made them

“highly valuable intellectual properties” [49].

Unfortunately, the high value of machine-learning models

also makes them lucrative targets to attackers. Because many

machine-learning models are trained on a public cloud or a

providing public interface [7], [18], they do present a broad

attack surface. As demonstrated by previous works, the param-

eters (e.g., weights) and hyper-parameters (e.g., regularization

terms) of classical machine-learning models like logistic re-

gression can be inferred from the public interface [59], [61].

Stealing DNN model secrets through side-channel. How-

ever, applying the attack methods described above against

Deep Neural Networks (DNN) models are inefficient for an

adversary. Given that DNN models are highly customized and

containing a multitude of hyper-parameters, the search space is

huge. Recently, a number of works were proposed to steal the

model secret through side-channel attacks [5], [13], [23]–[25],

Junyi Wei and Yicheng Zhang are both first author. Zhe Zhou is the
corresponding author.

[41], [63], [65]. Some of those works assume the adversary has

physical access to the device so high-resolution side-channels
about power consumption and accessed memory addresses can

be exploited [5], [24], [25], [63]. For the remaining works

about the remote adversary, most of them exploited CPU-
based cache side-channel [13], [23], [65]. Given that the

Graphics Processing Unit (GPU) has become the dominant

hardware to train and run DNN models, the practical impact

of those CPU-based attacks is questionable. The only work

investigating GPU was done by Naghibijouybari et al. [41],

showing that the number of neurons of DNN’s input layer can

be learned. Yet, this information provides little guidance for

an adversary to recover the whole DNN structure. The key

question we ask and aim to answer in this work is: can an
adversary infer DNN structural secret like layers and their
hyper-parameters by exploiting GPU side-channel?

As the first step, we revisited the existing GPU side-

channel [41] but found it insufficient for our goal. Their attack

exploits an Nvidia GPU feature named Multi-Process Service
(MPS), which allows the attacker’s kernel (called spy) to stay

in the same GPU cores with a victim kernel. The spy observes

the victim kernel’s resource usage by taking samples through

CUPTI [45] (Nvidia’s performance counters). However, due

to the unbalanced scheduling by MPS, the spy is allowed to

collect only one sample at the end of one training iteration,

which is too coarse-grained to reveal the DNN structure.

Comparing to the previous work [41], we pursue the oppo-
site direction. We let MPS be switched off (the default setting)

and run a spy concurrently with the victim’s DNN to force

context switching. This time, the time-sliced scheduler ensures

spy and victim kernels to take fair shares of execution time.

Therefore the spy can achieve a much higher sampling rate

through CUPTI, as illustrated in Figure 2 and Figure 3.

Challenges. Still, several challenges have to be addressed to

recover the model structure. 1) The transition between DNN

layer operations (or op) is too fast to be observed by the

spy, making the ops inseparable from spy’s view, due to

its insufficient sampling rate. A similar situation exists also

for short ops. 2) The execution time for different ops varies

significantly, resulting in an uneven number of samples among

ops. 3) Different from the kernel co-location side-channel [41]

that directly tells spy the victim’s resource usage, for context-

switching side-channel exploited by us, the only small penalty

can be observed, which reflects the victim’s resource usage

indirectly. In addition, the penalty to the current kernel is

125

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00031

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

highly impacted by what has been executed by previous

kernels. Discerning ops using this information is more difficult.

Our attack. We address those challenges by developing a

hybrid attack framework. To address the issue of insufficient

sampling rate, we launch the GPU denial-of-service (DoS)

attack using multiple spy kernels to slow down the victim

kernel. By doing that, a spy is able to obtain a lot more

samples per op and increase the prediction accuracy. To

address the issue of unbalanced samples and weak side-

channel, we design the inference model on top of Long short-

term memory (LSTM) model, which is capable of handling

complex time-series [31], [36] and utilizing the operation con-

textual information. In addition, we customize the inference

model based on unique insights into DNN training. Instead

of identifying layers and hyper-parameters at one pass, we

design different LSTM models to identify convolutional ops,

non-convolutional ops, and hyper-parameters separately, which

increases the prediction accuracy for individual op and hyper-

parameter. Due to multi-iteration training, the same execution

sequence of DNN layers can be observed many times, which

gives the adversary an opportunity to correct misclassification.

We develop two voting models based on LSTM to merge

predictions across iterations. Finally, we leverage the DNN

model syntax (i.e., rules well-known to the machine-learning

community) to correct the remaining errors.

We implement our attack (named MoSConS1) based on

the above design. By executing MoSConS, an adversary will

have the capability of inferring the structure of a DNN

model trained on the cloud by a victim. We found MoSConS
is effective on the cloud even when the CUPTI access is

restricted by the latest NVidia driver [47], after the adversary

performs a driver downgrading attack. MoSConS is evaluated

on a popular GPU (Nvidia GeForce GTX 1080 TI) with

TensorFlow installed. Our evaluation shows MoSConS can

achieve high accuracy for inferring model secret, including

operation sequence, layer hyper-parameters (neuron num-
ber, filter size, filter number and stride) and optimizer.

To highlight, after several models are profiled by the ad-

versary, she can predict the layers and hyper-parameters of

MLP, ZFNet and VGG16 with 98.4% and 86.6% accuracy

on average, which significantly reduces her time, monetary

and the labor cost of constructing a full-fledged model. As

such, we argue stealing fine-grained model secret is feasible,

and we advocate the model secrecy should be considered

when building new machine-learning infrastructures, including

hardware and system stacks.

Contributions. We summarize our contributions below.

• We developed a new way of exploiting the previously

discovered GPU side-channel [41], allowing attacker to

inspect another CUDA application at fine-grain.

• We carried out a set of pilot studies to understand how

DNN ops are scheduled by system stack and GPU. We

also showed how context-switching penalties could be

influenced by different spy and victim kernels.

1Short for Model Secret Extraction with GPU Context Switching.

• We developed a new attack MoSConS that can extract the

structural secret of a DNN model. Our evaluation shows

MoSConS can achieve high inference accuracy.

II. BACKGROUND

A. Deep Neural Networks

Deep learning is a family of machine-learning methods that

feature a transformation from input to output with a cascade

of non-linear processing units. A non-linear processing unit

is called a layer, while the transformation is called a model.
Before training the model, the developer should define a model
structure, including what layers to use, their hyper-parameters,

and how they should be connected. Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN) are

the most popular DNNs. CNN cascades layers while RNN

features a feed-back loop between layers. In this work, we

focus on CNN models like other prior works [5], [13], [23]–

[25], [41], [63], [65].

Layers. A CNN model typically contains three types of layers:

convolutional layer, fully-connected layer, and pooling layer.

Each layer consists of a number of neurons, which take input

from neurons (say x1, x2, ..., xn) of the previous layer and

computes an output for the next layer. For fully-connected

layer, the neuron function is φ(
∑n

i=1 wixi + β), where wi is

the weight for every input neuron xi, β is the bias value and

φ is the non-linear transformation function (e.g., ReLu). A

convolutional layer uses the kernel to filter input so only a

spatial region is connected to one neuron. The pooling layer

reduces the size of the input to decrease the computational

overhead. For example, max-pooling returns the maximum

value for a subset of input. We consider the number of layers

and layer sequence as a model secret.

Hyper-parameters. Hyper-parameters are set by the develop-

ers before training. They can be grouped into two categories:

the variables specific to each layer (we call them layer hyper-
parameters) and the variables related to the training algorithm

(we call them model hyper-parameters). The layer hyper-

parameters mainly describe the spatial properties of each layer.

The model hyper-parameters include learning rate, number of

epochs, batch size, etc. In this work, we focus on layer hyper-
parameters. In particular, we consider the following as model

secret: 1) the activation function used by each layer; 2) the

number of neurons for fully-connected layer; 3) filter size

of each convolutional layer; 4) the number of filters of each

convolutional layer; 5) the stride of each convolutional layer.

DNN training. The primary goal of training a DNN model

is to learn neuron weights. Before training, the developer

designs a loss function that measures the prediction errors.

By gradually minimizing the loss, the developer ultimately

gets a satisfying model. The weights adjustment is usually

done by a gradient descent optimizer, which calculates the

loss first (called forward propagation) and then calculates

the gradient of the updated loss over weights, from deeper

layers to shallower layers (called back propagation). With the

gradient, each weight is adjusted by subtracting a constant

126

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

(learning rate) multiplying the gradient. A training dataset is

usually divided into batches and the model’s internal parameter

is updated after all samples of a batch are processed (called an

iteration). Each run of the training dataset is called an epoch
and the whole training process typically takes many epochs,

consuming days for large datasets [12], [21].

Model structure. While there are only a few basic building

blocks for a DNN, the way how they are assembled and tuned

has a fundamental impact on DNN’s performance. Take image

recognition as an example. The evolution of model families

from AlexNet [29], VGG [57], Inception [58] to ResNet [22]

advances the top-5 performance on ImageNet challenge [54]

from 83.6% to 96.43%, which is even on par with human’s

performance. What’s more, even small customization within

the same model family can make a big difference. For ex-

ample, under the VGG model family, VGG19 adds 6 extra

3x3 convolutional layers to VGG13. The error rate can be

reduced from 9.6% to 7.5% [57], which can rank it to the

second in the ILSVRC2014 benchmark [54]. On the other

hand, knowing which “knob” to tune and how is by no means

trivial, as the possible combinations of layers and their hyper-

parameters are nearly infinite. As such, the model structure is

a key intellectual property [49] and deserves strong protection.

DNN system stacks. To reduce the efforts in training, DNN
system stack is developed, like TensorFlow [1], Torch [52],

MxNet [39] and Caffe [26]. Those system stacks can translate

the high-level code (e.g., Python) that describe the model

structure to low-level code (e.g., Nvidia CUDA) that are

tailored to the hardware platform (e.g., CPU/GPU, single

machine/distributed cluster). In this work, we examine our

attack against TensorFlow due to its popularity [55].

B. GPU Architecture

Unlike CPU integrating several cores in a die, powerful

GPU can have thousands of cores in a single die executing in-

structions concurrently. Given that DNN operations are mainly

based on Generalized Matrix Multiply (GEMM), GPU turns

out to be better hardware to train DNN models comparing to

CPU. In this work, we focus on Nvidia GPU.

To use the GPU resources for training DNN, Nvidia recom-

mends using its API interface for general-purpose computing

called CUDA (Compute Unified Device Architecture) [44].

In particular, a CUDA application (or host application) is

composed of a number of kernels (i.e., computing tasks) to be

executed in GPU. A sequence of kernels that follows execution

order is called a GPU stream. Each kernel needs to specify the

number of blocks and how many threads to be used by each

block [42]. A group of blocks is called a grid and all threads

under the same block have to be executed in the same SM

(Streaming Multiprocessor) and the entirety of a block must

be executed before scheduling another block. Inside SM, 32

threads are grouped and launched together (called warp) by

the warp scheduler, which allocates resources per warp (e.g.,

cores). An SM can have multiple warp schedulers and only one

warp is managed by a warp scheduler at a time. Before a warp

Victim VM Spy VM

GPU Cloud Instance

DNN
Model

Malicious
CUDA Code

Direct Access

Execution Side Channel (CUPTI)

Victim Spy

Fig. 1. Adversary model of our attack.

is scheduled, GPU uses the concurrent scheduler and time-

sliced scheduler to determine the execution order of kernels

and blocks.

When a CUDA application runs on GPU, a CUDA context
is created. It is similar to the CPU context, which keeps

references to memory, registers, and other state information.

When a CUDA application is preempted by another, its context

will be switched out and replaced by the next application.

C. GPU Profiler

To help developers of GPU applications with performance

tuning, GPU vendors and DNN system stacks offered execu-

tion profilers. While they provide valuable insights to develop-

ers, we found they can be exploited for model stealing. Below

we describe the profilers provided by Nvidia and TensorFlow.

Nvidia profiler. A developer can use CUDA Profiling Tools
Interface (CUPTI) [45] of Nvidia to profile CUDA appli-

cations. In particular, its Event & Metrics APIs allow the

developer to interact with the performance counters which log

the resource usage of GPU. The developer needs to initialize

CUPTI before running the CUDA application. When the

application completes, the readings of performance counters

will be returned through the Event & Metrics APIs. Take event

L2_subp0_read_tex_hit_sectors as an example. It

represents the number of reading requests from Texture cache

that hit the slice 0 of L2 cache. Thus, we can leverage its

reading to have an insider look into how the CUDA application

interacts with GPU cache and memory.

TensorFlow profiler. TensorFlow provides a timeline mod-

ule [19] to help developers profile the execution of DNN

operations on GPU. In particular, it logs the name of each

operation, its start and end timestamp and the relevant param-

eters. To enable the TensorFlow profiler, the developer needs

to change a TensorFlow configuration option trace_level
to FULL_TRACE. When the training is finished, the timeline

module will keep all the profiled traces into a JSON file which

can be visualized by the Chrome browser (loading the JSON

file under the page chrome://tracing). An example of a

timeline is illustrated in Figure 2. In fact, by correlating the

CUPTI readings with the TensorFlow timeline, we are able to

create a labeled training dataset to build our attack model.

D. Adversary Model

We assume a similar adversary model as Naghibijouybari

et al. [41], in which a spy CUDA application (or spy for

short) and a victim CUDA application (or victim for short) are

127

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

launched on the same GPU (illustrated in Figure 1). This is

feasible in the cloud settings, where multiple applications can

share the same physical GPU through I/O pass-through [60],

and prior works have demonstrated concrete techniques for

machine co-location [4], [53], [67]. We assume those tech-

niques are executed by the adversary.

We assume the adversary is able to run the spy while train-
ing is performed by the victim. The spy uses CUPTI reading

associated with each kernel execution to infer operations run

by the victim. The adversary has profiled combinations of

layers and their hyper-parameters on the same GPU to be

used by the victim. The goal of the adversary is to learn

which layers and hyper-parameters are chosen by the victim

model. We target the training stage because it typically takes

hours or days and the same layer sequence is executed many

times [12], [21], leaving abundant opportunities for the spy to

extract side-channel information about the victim. Comparing

with the work by Naghibijouybari et al. [41], one prominent

difference is that our attack does not rely on the activation

of Nvidia’s Multi-Process Service (MPS) feature. This makes

our attack more practical as MPS is disabled by default 2.

While Nvidia has released a patch [47] recently to restrict

CUPTI access, we found this mitigation can be easily bypassed

on the cloud. Based on our test on Amazon EC2, when we

rent a VM as the root user, initially CUPTI access is blocked.

But after downgrading the driver version using root’s
privilege from 418.40.04 (patched) to 384.130 (unpatched),
CUPTI can be accessed. To notice, when spy and victim

are on two different VMs sharing the same GPU, the spy can

freely downgrade the driver in its own VM, and such action is

completely invisible to the victim. Therefore, the GPU side-

channel based on CUPTI is still valid. We pick Nvidia as the

testing platform due to its high popularity in deep learning.

Our tested GPU is from Pascal architecture [46], which was

released in 2016 and widely used now.

A number of recent works studied attacks against DNN

confidentiality [5], [13], [23]–[25], [41], [63], [65] and they

also consider layers and their hyper-parameters as secret. The

works are done by Hua et al. [25] and Batina et al. [5] were

able to reveal neuron weights but they rely on physical access
to the DNN accelerator. We will investigate how our adversary

(remote) can infer model weights as future work.

III. UNDERSTANDING MODEL EXECUTION ON GPU

In this section, we report our analysis of how DNN is

executed on GPU and motivate the design of MoSConS. We

first describe how GPU kernels are scheduled in Section III-A.

Then, we demonstrate our observation regarding GPU con-

tention in Section III-B. Finally, we show the design of the spy

program and the difference between DNN layers’ execution

traces in Section III-C.

Experiment platform. Our study is carried out on a work-

station equipped with Nvidia GeForce GTX 1080 TI. The

2MPS is enabled after a user manually runs
nvidia-cuda-mps-control -d

graphics driver version is 384.11. The CUDA version is

V9.0.176 and the cuDNN version is 7.4.2. The workstation

has installed Ubuntu 16.04 and we use Tensorflow 1.12.0.

A. Scheduling of GPU Kernels

When a DNN model is to be executed, the system stack

translates the model structure into the execution plan and the

hardware decides how to schedule the computation workload.

Unfortunately, not all the details were documented by the

stakeholders. Below we summarize the insights we learned

through profiling the execution of DNN models.

TensorFlow scheduling. When DNN model is executed on

Nvidia GPU, the execution will be carried out by GPU

streams and each stream consists of CUDA kernels that invoke

Nvidia’s cuDNN APIs [11] like Conv2D and BiasAdd.

We found TensorFlow groups kernels under I/O streams

(one stream for CPU-to-GPU data transfer and one for GPU-

to-CPU transfer) and compute streams (one or more streams

for feed-forward and back-propagation computation). Those

streams execute in parallel while the overlap between I/O

and compute streams is fairly small (less than 1% of time

period when we train VGG [57] and ResNet [22]). Inside each

stream, the same kernel sequence is executed under different

training iterations. As such, profiling the layer computation

under the compute streams and using such information to

infer the victim’s DNN execution later is feasible. In addition

to TensorFlow, we found PyTorch and Caffe schedule GPU

similarly (e.g., serializing kernels during training) [26], [51].

As such, our attack is expected to succeed on other stacks too.

GPU Scheduling. When two GPU kernels are executed to-

gether (e.g., spy and victim), contention about GPU resources,

like cache and atomic memory units, will be introduced. To

handle contention, two approaches were developed by Nvidia.

The first approach is to interleave kernel execution and

switch context based on time-sliced scheduler [9]. A number

of time-slices are given to each kernel, and they are scheduled

in a mostly round-robin manner. For example, assuming TSAi

and TSBi are the i-th time-slices for spy and victim kernels,

the execution order will be TSA1, TSB1, ..., TSAi, TSBi.

The duration of each time-slice depends on the priority of the

computing task. When a time slice expires, preemption will

force context switching between kernels.

The second approach is to let two kernels run concurrently

under the same GPU context, enabled by a CUDA enhance-

ment named Multi-Process Service (MPS) [43]. The MPS

service runs like a delegate and let other CUDA applications

connect to it and share context, through its scheduler.

B. GPU Contention

The two GPU scheduling approaches introduce a different

penalty to host applications and we compare them below.

For scheduling with MPS, Naghibijouybari et al. reverse-

engineered the co-location strategy of MPS and showed Left-

over policy is adopted such that a kernel takes the idle SM

not occupied by the prior kernel [40]. Nonetheless, when both

kernels attempt to occupy all SMs (i.e., creating N blocks if

128

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Spy and victim applications with MPS enabled.

Fig. 3. Spy and victim applications with MPS disabled.

the number of SMs is N), they can achieve co-location within
an SM. As a result, there is direct contention of the same

resources at the same time.

For the time-sliced scheduling without MPS, a kernel

does not share context with another kernel. However, context

switching between two kernels causes a performance penalty

to the following kernel. For instance, when the previous kernel

holds a large number of L2 cache entries, higher data-access

overhead will be observed for the next kernel.

The work done by Naghibijouybari et al. [41] infers the

neuron number of the input layer of a DNN model under the

MPS setting, but we found separating the layers and learning

their secret is infeasible. Figure 2 and Figure 3 show the

CUPTI readings under the TensorFlow timeline with MPS

on and off. It turns out MPS increases the execution time

of the spy kernel significantly. In most cases, the spy kernel

has to wait for a victim’s training iteration. As such, when

the spy program turns on CUPTI, only one sample can be

obtained for one entire iteration. We speculate the slow-down

of spy kernel is caused by the uneven resource allocation of

MPS service (TensorFlow kernels dominate the resource). On

the other hand, time-sliced scheduling is able to make fairer

sharing between kernels when they are from different hosts.

While Naghibijouybari et al. [41] mentioned that they use

“several hundred consecutive kernels in spy” to cover “one

whole victim kernel execution”, their goal is to ensure co-

location of every SM with the victim, rather than obtaining

CUPTI readings about different DNN layers. We replicate their

setting and found those all kernels finish at the same time.

C. Analysis of DNN operations

Our attack depends on one assumption: different DNN

operations result in different context-switching penalty, which

is measurable by the spy. Below we test this assumption and

report our findings.

Design of spy. We experiment with the spy kernel running 4

blocks and 32 threads to contend with the victim kernels. As

such, 4 SMs will be taken by the spy. Given that TensorFlow

typically takes all SMs, 4 SMs for spy are enough to observe

the penalty caused by context overlapping.

Inside the spy kernel, dummy operations like matrix mul-

tiplications are executed to measure the context-switching

penalty caused by the prior victim kernel. Table I shows

the CUPTI readings about 5 different spy kernels when the

victim kernel runs MatMul (Matrix Multiplication). It turns

out when the spy kernel runs Conv200 (200x200 convolu-

tional operation), the best result is achieved, with the largest

reading on average and the smallest ratio between the standard

deviation and the average. In fact, this operation has the largest

overlap with DNN operations in terms of the requested units

and memory-access patterns, which explains its effectiveness.

Another advantage of Conv200 kernel is that its execution

time is shorter (2.5ms) comparing to other kernels, so a higher

sampling rate can be achieved.

Impact of DNN operations on spy. MoSConS would not

work if different DNN operations have same impact on spy’s

CUPTI readings. To assess the impact, we first test different

DNN operations and collect the CUPTI readings with the spy

kernel Conv200. Table II shows the result, which clearly

indicates operation type has different impact on spy.

TABLE I
CUPTI READING OF DIFFERENT SPY KERNELS WHEN MATMUL IS RUN BY

VICTIM. EVENT 1 IS FB SUBP1 WRITE SECTORS. EVENT 2 IS

FB SUBP0 READ SECTORS. WE RUN EACH COMBINATION OF SPY AND

VICTIM FOR 10,000 TIMES. THE RESULT IS REPRESENTED AS “AVERAGE

(STANDARD DEVIATION)”.

Spy Kernel Event 1 Event 2
VectorAdd 2.64(18.57) 164.50(68.28)
VectorMul 2.44(2.56) 163.39(22.94)
MatMul 15.94(7.51) 1472.27(82.92)
Conv100 629.51(115.23) 1548.48(256.18)
Conv200 2525.85(16.59) 2489.24(175.62)

TABLE II
CUPTI READINGS OF CONV200 SPY KERNEL WHEN DIFFERENT VICTIM

OPERATIONS ARE EXECUTED. NOP MEANS THE VICTIM KERNEL IS IDLE.
THE RESULT IS REPRESENTED SIMILARLY TO TABLE I.

Victim Op Event 1 Event 2
MatMul 2525.85(16.59) 2489.24(175.62)
Conv2D 2542.45(28.73) 5695.03(976.65)
ReLU 0(0) 1164.95(1076.20)
BiasAdd 0(0) 948.89(777.74)
Sigmoid 0(0) 1287.55(1017.06)
NOP 34943.46(232.18) 18454.04(5370.17)

IV. MODEL EXTRACTION ATTACK

Challenges. Given that DNN structure can be seen as a

sequence of operations (or ops for short) and different ops

result in different samples read by a spy, a natural solution

for spy would be separating the sequence of samples first and

then identifying the individual op from each segmentation.

This approach is widely used for side-channel attacks when

the secret is a sequence, e.g., PIN inputted on smartwatch [33],

[62]. However, this approach does not fit our problem for

three reasons. 1) spy’s sampling rate is relatively low (less

than 1K samples per second) comparing to other powerful

side-channels (e.g., 2 Giga samples per second for power

129

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

analysis [38]), making op transitions and short ops un-
detectable. 2) computation-intensive ops like Conv2D take

much longer time to compute, resulting in uneven samples

among ops. 3) the CUPTI readings fluctuate from time to time

even for the same op (e.g., the standard deviation of ReLU is

1076.20 shown in Table II). Those observations indicate the

complex relations between DNN structure and the context-

switching side-channel, which cannot be addressed by simple

statistical or machine-learning models. We tackle those issues

by launching a novel “slow-down” attack first and then using

LSTM (Long short-term memory) models to detect different

DNN ops and hyper-parameters.

Slow-down attack on victim kernels. Though by shortening

the execution time of a spy kernel we can collect more

samples, we found the victim ops are less distinguishable.

Therefore, we choose to elongate the victim ’s execution time
to obtain more samples. Our approach is to let the attacker

launch more kernels inside the spy program, through which the

time-sliced scheduler will reduce the duration of each time-

slice for victim.

In particular, we tested hundreds of kernel parameter com-

binations by changing <#kernels, #blocks, #thread>, with the

value of each ranging from 1 to 32 (multiplied by 2). We

found there is an upper-bound of the slow-down ratio, such

that higher numbers of kernels/blocks/threads are not always

more effective. After the above analysis, we decide to use 8

kernels for spy and put 2 kernels into a group with the same

settings. Assume each group is named as Gi while 0 ≤ i ≤ 3.

The number of blocks and threads for each kernel are set to

4× 2i and 4× 2i× 32 . Our empirical result shows the victim

can be slowed down for 17 times while the spy is slowed

down for less than 3 times. To notice, we can run the slow-

down attack sparingly so the overall victim training time will

be increased only slightly. In Section V-F, we elaborate on the

performance overhead of slow-down attacks on the victim.

Overview of the inference attack. Before the actual attack,

the adversary profiles models under different families to train

the inference models. During the attack, the adversary waits

for the bootstrapping of a TensorFlow process (e.g., through

monitoring GPU usage) before launching the inference attack.

Once training is started, the spy kernels are launched. When

enough CUPTI readings are collected, all spy’s kernels will be

terminated. Next, the spy’s CUPTI readings will be processed

by the inference models to predict the op sequence of the

victim, which we call OpSeq for short. The hyper-parameters

will be inferred as well and attached to OpSeq.

We found the unique characteristics of DNN training can

be exploited to develop sub-models for inferring layers and

hyper-parameters separately with high accuracy. 1) A spy

can obtain multiple samples for convolutional ops (conv
for short) and matrix multiplication ops (MatMul) due to

their long execution duration. 2) DNN training usually takes

many iterations resulting in the repeated OpSeq of the victim.

Between iterations, there is a gap where no kernel is executed.

3) Similar to natural-language sentences, DNN model has

TABLE III
STRUCTURES OF THE 5 LSTM MODELS USED IN MOSCONS.

Mlong Vlong Mop Vop Mhp

LSTM 256
LSTM 256

LSTM 128

FC
Softmax

Cross-Entropy
Weighted

Sum
Sum Sumif Sumif

“syntax” about the order of ops and hyper-parameters (e.g.,

pooling should presume conv). Based on those insights, we

develop 5 LSTM models and one simple machine-learning

model (Mgap) for different tasks and assemble their results.

Below we overview the attack flow (also illustrated in Fig-

ure 4). The structures of all LSTM models are shown in

Table III.

• Splitting iterations. After the attacker obtains CUPTI

samples, she splits them based on the gap between

consecutive iterations using an inference model Mgap.

• Recognizing long ops. The attacker looks into the sam-

ples within one iteration, and classifies each one into

conv, MatMul or OtherOp using Mlong. Then, the

attacker combines the predicted ops across all iterations to

correct the misclassified ones, in a process called voting
using Vlong.

• Recognizing other ops. For other layer ops (e.g.,

MaxPool) or activation functions (e.g., ReLU), the at-

tacker classifies them using Mop. The attacker uses Vop

to vote and refine the classification result. OpSeq is

generated by combining all inferred ops.

• Inferring hyper-parameters. The attacker uses Mhp

to infer hyper-parameters related to ops and the whole

model (e.g., optimizer).

• Model correction. After the above steps, the adversary

corrects ops and hyper-parameters according to DNN

syntax.

After the above steps, the attacker can reconstruct the

victim’s model structure. In most cases,combinations of con-

secutive ops can be deterministically mapped to layers. For

example, a convolutional layer runs conv and BiasAdd,

while a fully-connected layer runs MatMul and BiasAdd.

However, when non-sequential connection between layers are

introduced, like shortcut used in ResNet [22], OpSeq could

reflect multiple model structures. We discuss this issue in

Section IV-C.

Selecting CUPTI counters. While Nvidia provides tens of

CUPTI counters, using all of them for MoSConS does not

lead to an optimal result. Firstly, some of them are always

zero or constant, revealing nothing about the victim. Secondly,

using more counters will increase the execution time of the

spy kernel, reducing the sampling rate. By checking the doc-

umentation, we found the counters are divided into multiple

groups and the execution time of a spy kernel depends on the

number of groups it access. In the end, we select 3 groups of

130

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

10 counters relevant to convolution or matrix multiplication

operations and they are listed in Table IV.

Fig. 4. Overview of attack flow. The sample sequence of spy is split to
multiple iterations 1©. Then they are sent to Mlong , Mop and Mhp models to
predict the victim ops (e.g., N at 2© and (R)elu, (P)ooling, (M)atMul
and (B)iasAdd at 3©), hyper-parameters 4© and optimizer 5©. Voting is done
by Vlong 7© and Vop 6© to correct mis-predicted ops. Finally, the victim’s
model structure is revealed after collapsing consecutive ops and correction
with model syntax (8© 9©).

A. Splitting Iterations

We choose to split the iterations first because 1) voting

across layers cannot be achieved otherwise; 2) the gaps be-

tween consecutive iterations are easier to identify.

We develop a model (called Mgap) based on Light Gradient

Boosting Machine (LightGBM) [37] to classify each sample of

spy into NOP3 or BUSY. The input to the LightGBM is a vector

of CUPTI samples and each sample contains values from the

counters (all integer values) described in Table IV. Before

classification, we also apply MinMaxScale to pre-process the

input and convert each feature value to be ranged from 0 to

1, in order to prevent training bias.

While the NOP sample is usually associated with the iter-

ation gap, we found sometimes it also exists within a layer.

On the other hand, the gap usually contains multiple NOP.

As such, we set a threshold THgap and split iterations if the

number of consecutive NOP is above THgap. Before moving

to the next step, we also need to identify the iterations with

invalid sample sequence and remove them. Those iterations

emerge because of incomplete sampling, e.g., the spy is

launched in the middle of a training iteration. To remove

them, we compare the number of samples to the average

across iterations. Assuming the average number of samples is

3We use NOP for simpler presentation. It does not mean that the GPU is
executing a NOP instruction.

RCavg and the lower-bound and upper-bound threshold ratios

are Rmin and Rmax, the samples of a valid iteration should

be within [RCavg ∗ Rmin, RCavg ∗ Rmax]. We elaborate on

the parameter choices in Section V-A.

B. Predicting OpSeq

Recognizing long ops. Spy’s primary goal is to identify

convolutional layers and fully-connected layers, because they

have the biggest impact on the performance of a CNN

model. During feed-forward training, a convolutional layer

sequentially invokes conv (e.g., Conv2D), BiasAdd and

an activation op (e.g., ReLU). During back-propagation, it

calculates the gradient in a reverse order using ops according

to the feed-forward pass (e.g., ReLUgrad, BiasAddGrad
and Conv2DBackprop). Fully-connected layer executes

MatMul, BiasAdd, and activation op like ReLU in feed-

forward training. Similarly to the convolutional layer, the

reverse of the feed-forward ops will be executed during

back-propagation (e.g., ReLUgrad, BiasAddGrad, and

MatMul).

Among those ops, conv and MatMul are easier to identify

because of their long execution time. We develop Mlong, an

LSTM model to classify each CUPTI sample into four classes:

conv, MatMul, OtherOp and NOP. LSTM is used for this

task because it has shown many successes in handling complex

time-series [31], [36] and can remember features over the long

term or short term.

Our LSTM model takes a vector of the selected counters

under a CUPTI sample as word input and outputs a four-

dimension vector, which contains the logit values of the 4

targeted classes. When training the LSTM model, we found

the number of samples for conv differs a lot from other ops,

leading to a very imbalanced training dataset. As a result,

using the samples for training under the default LSTM settings

would not yield good accuracy. To address this issue, we

designed weighted softmax and customized cross-entropy loss
to compensate for the imbalanced data. Specifically, when

calculating the loss for a sample, we calculate the softmax

and cross-entropy loss between the logits outputted by the

LSTM model and the ground-truth labels (the op names of

TensorFlow) processed by one-hot encoding. Then, the loss is

amplified by a constant if the sample is from the minor class.

Voting. DNN training usually takes many iterations and there-

fore the spy can obtain multiple predicted OpSeqs, which can

be combined to correct the erroneous predictions at individual

sequence. As such, we designed a voting procedure for error

correction.

Our voting model, named Vlong, is developed also based on

LSTM. The model consumes the output from Mlong over all

iterations to correct the mispredictions. The model is trained

with standard softmax and cross-entropy loss against ground-

truth. Specifically, when the attacker monitored n iterations,

the input would be a 4 ∗ n dimension vector where each 4-

dimension word is a one-hot prediction from one iteration.

To be noticed is that the predicted OpSeqs across iterations

need not be aligned before being inputted to the voting model

131

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SELECTED CUPTI EVENTS & METRICS COUNTERS.

Group(#counters) Counter Description
1(2) Tex0/1 cache sector queries Number of texture cache 0/1 requests..
2(4) Fb subp0/1 read/write sectors Number of DRAM read/write requests to sub partition 0/1.
3(4) L2 subp0/1 write/read sector misses Number of write/read requests sent to DRAM from slice 0/1 of L2 cache.

as LSTM is capable of memorizing values over arbitrary time

intervals. Without losing generality, we choose the timeline of

the first iteration’s OpSeq as the base timeline, and let other

OpSeqs be compared with it.

Recognizing other ops (OtherOps). The rest ops of con-

volutional and fully-connected layer, as well as ops of other

layers, are recognized by another inference model named Mop.

We aim to detect BiasAdd, activation functions like ReLU
and their back-propagation versions (e.g., BiasAddGrad
and ReLUgrad) for convolutional and fully-connected lay-

ers. For pooling layers, only one op is executed for feed-

forward (e.g., MaxPool) and back-propagation passes (e.g.,

MaxPoolGrad). We call those ops as OtherOp. Mop takes

the same input as Mlong and outputs class logits of OtherOp.

It also uses the softmax and cross-entropy loss. But when

calculating the total loss, it does not sum up the loss from

all samples. Instead, it only counts in those relevant to

OtherOp. In other words, the loss resulted from Conv2D,

Conv2DBackprop and NOP samples are all neglected. The

prediction results are refined by a voting model named Vop,

which is almost the same as Vlong. Similar to the step above,

when training the voting model, only the loss from OtherOp
are counted.

To notice, Mop still makes predictions for those samples

that are irrelevant to OtherOp, like the back-propagation ops.

Those predictions though are not used by the attacker but they

are implicitly used by the LSTM model to make predictions

for the subsequent sample, as the LSTM model can memorize

the input status.

Collapsing ops. For long ops like conv, multiple samples

can be observed, leading to multiple predictions. We collapse

the consecutive predictions if they are identical into one op.

For example, if the predicted OpSeq is {ReLU, conv, conv,

conv, BiasAdd}, the new OpSeq after collapsing will be

{ReLU, conv, BiasAdd}.

C. Inferring Hyper-parameters

In addition to learning ops, the attacker also needs to

learn the layer hyper-parameters, like filter size as stated in

Section II-A. We designed an LSTM model named Mhp to

predict them. The model has the same structure as Mop, but the

training data is constructed differently. For neuron numbers,

the label is assigned to the last sample of a convolutional

or fully-connected layer. We use the last sample because it

encourages Mhp to make full use of the information from all

the samples related to the layer.

Other hyper-parameters. MoSConS reveals most of the

hyper-parameters uncovered by previous works, even though

we assume a much weaker adversary (remote attacker without

physical access). On the other hand, the difficulties of un-

covering all hyper-parameters are not the same. For example,

shortcut [22], a technique to add a connection between non-

adjacent layers, is not recovered by MoSConS. The model

developer can choose where to place the shortcut but such

information is not visible to the spy with only CUPTI access.

However, the attacker can leverage the domain knowledge

to infer the places of shortcuts after the layers are learnt. For

example, if the layer structure is similar to ResNet [22], the

shortcut is likely to bypass every 2 convolutional layers.

D. Correction with Model Syntax

After the previous steps, the attacker will obtain an OpSeq
augmented with hyper-parameters but errors exist due to

imperfect prediction. On the other hand, we found the attacker

can correct the predicted OpSeq with heuristics pertinent to

DNN syntax. Firstly, certain ops have inherent dependencies

and the wrong order will break the training process. For

example, in the feed-forwarding phase, conv and MatMul
are always followed by a BiasAdd and an activation op

like ReLU. Secondly, the layer hyper-parameters depend on

the ops of the current and adjacent layers. For example, the

number of filters for a convolutional layer or the number of

neurons for a fully-connected layer usually gets doubled when

the layers go deeper. Besides, they are set to the power of

two as choosing other values often leads to inferior model

performance. Therefore, the attacker can correct the wrong

hyper-parameters based on these rules.

While this step requires the attacker’s domain knowledge in

DNN, we want to point out those heuristics are well known.

In addition, as shown in our evaluation, previous steps already

produce high-quality OpSeq and hyper-parameters. In fact,

only a few predictions need to be corrected.

V. EVALUATION

In this section, we evaluate the inference accuracy of

MoSConS. Firstly, we introduce the settings for our evaluation,

including the testing procedure, the parameter settings, the

dataset, and the evaluation metrics. Then, we describe the

evaluation result, focusing on OpSeq and hyper-parameters.

A. Experiment Settings

Experiment procedure. Our experiment consists of two steps.

Firstly, we use the spy program to profile a set of CNNs

and train the inference models. Each spy’s CUPTI reading

is attached with ground-truth values (e.g., conv and filter

size 3x3). We achieve this goal by aligning the model’s ops

with spy’s readings using the TensorFlow timeline profiler.

Sometimes, a spy kernel can overlap with multiple victim ops

on the timeline and we choose the TensorFlow label having

132

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

TABLE V
THE LAYERS AND HYPER-PARAMETERS OF PROFILED MODELS. THE

SUBSCRIPTS ARE HYPER-PARAMETERS, INCLUDING THE NUMBER OF

NEURONS, FILTER SIZE, NUMBER OF FILTERS, STRIDE AND ACTIVATION

FUNCTIONS. THE LETTERS ARE EXPLAINED IN TABLE VII.

Model Structure

Cust.
MLP

M64,R −M128,T −M256,S −M512,R −M1024,T −
M2048,S −M4096,R −M8192,R −M16384,S −
OptimizerAdagrad

AlexNet

C11,96,4,R − P − C5,256,1,R − P − C3,384,1,R −
C3,384,1,R − C3,256,1,R − P −M4096,R −M4096,R −
M1000,R −OptimizerAdam

Cust.
VGG19

C13,64,1,R−C13,64,1,R−P −C11,192,1,R−C9,256,1,R−
P −C7,256,1,R −C5,256,1,R −C3,256,1,R −C1,256,1,R −
P −C3,512,1,R −C3,512,1,R −C3,512,1,R −C3,512,1,R −
P−C1,512,1,R−C1,1024,1,R−C1,2048,1,R−C1,4096,1,R−
P −M4096,R −M4096,R −M1000,R −OptimizerGD

the largest overlap with the spy kernel. Secondly, we run a

different set of models and use the trained inference model to

reveal the model secret.

For the models to be profiled, we choose MLP (Multilayer

Perceptron), AlexNet [29] and VGG19 [57]. They cover most

of the CNN building blocks. Table V lists their structures.

For the models to be tested, we choose a different MLP (five

fully-connected layers), ZFNet [66] and VGG16. By testing

this combination, we evaluate the effectiveness of MoSConS
against the victim’s model customization under the same

family and across families (AlexNet and ZFNet are different

families). Table IX shows the structures of tested models.

We feed images from ImageNet [54] to the profiled and

tested models to simulate the normal training workload. The

original image size is 64x64 and we convert the size to

224x224, which is a standard pre-processing technique used

by model developers to smooth the gradient [8]. We randomly

choose 10,000 images to train each model. The batch size is

set to 64 for VGG19 and VGG16, 512 for AlexNet, 256 for

ZFNet, and 128 for MLP and customized MLP. Each model

is trained for 500 iterations.

Parameter settings. We use a few pre-defined parameters for

iteration splitting based on empirical analysis. In particular,

we set THgap (minimum number of NOP per gap) to 6,

Rmin (minimum ratio of operations for an iteration) to 0.8,

and Rmax (maximum ratio) to 1.2. To notice, those numbers

can be adjusted based on the targeted GPU.

Evaluation metrics. We consider the accuracy as the main

metrics to evaluate the prediction. As an example, for conv
ops, we assume there are N conv ops in the victim model,

and their positions on the ground-truth OpSeq are L =<
l1, l2, ..., lN >. Attacker speculates there are M conv ops

and P of them correctly match L. The accuracy is P
N .

B. Iteration Splitting

This step needs to achieve high accuracy to ensure the

data for the later stages are usable. We tested this step using

the same training and testing models. We count the number

of NOP, ops and the correctly identified ones for computing

accuracy. Table VI shows the result. As we can see, the

accuracy is quite high (all over 94%). In addition, we found

TABLE VI
RESULT FOR ITERATION SPLITTING. CUST. IS SHORT FOR CUSTOMIZED.

Model Op # Ops (Accuracy)

Cust. MLP
NOP 203,721 (99.201%)

BUSY 204,914 (99.139%)

ZFNet
NOP 716,600 (94.687%)

BUSY 470,346 (96.316%)

VGG16
NOP 721,117 (96.456%)

BUSY 514,180 (94.084%)

our heuristics based on THgap, Rmin and Rmax are quite

effective to identify gaps between iterations. We rarely detect

gaps as false positives. Achieving high accuracy at this task

also helps us to obtain many “clean” iterations (covers the

entire OpSeq) for the voting task. We use 5 iterations for

voting. Besides, we also evaluated different batch (16 to 512)

and image size (32 to 384) and found their impact is quite

small: on VGG16, the accuracy of identifying NOP ranges

from 96% to 98%.

C. Op Inference

Table VII shows the accuracy of this step. The number of

predicted ops are counted before op collapsing. The accuracy

for customized MLP, ZFNet and VGG16 are in average 90%.

The effectiveness of MoSConS is lower for VGG16 so we

look into its false predictions. We found that most errors occur

at ops like BiasAdd and activation, which is less important

than conv. These errors are also easy to correct because they

show up together at a fixed pattern within the entire OpSeq.

For example, a model usually uses the same type of activation

function. All conv are followed by BiasAdd. Given that our

inference model rarely makes mistakes on key ops like conv
and MatMul, the attacker can correct those misclassified ops

easily. Also, we found there are alignment issues of ops when

reaching the end of OpSeq. Such issues can be partially

resolved with op collapsing and syntax correction.

D. Hyper-parameter Inference

We evaluated the prediction accuracy for hyper-parameters.

We are able to cover 5 of the 6 sensitive hyper-parameters

defined in Section II. Because some hyper-parameters under

the tested models have constant or limited values, we vary

those hyper-parameters on the profiled and tested models just

for this evaluation step. Below are the test settings.

• Filter size. We change the filter size of VGG19 and

AlexNet to 7 different value (1x1, 3x3, 5x5, 7x7, 9x9,

11x11 and 13x13) under different layers and predict if

those values can be correctly identified.

• Number of filters. We vary the number of filters from

64 to 4096, multiplying 2 on VGG19 and AlexNet.

• Number of neurons. We vary the number of neurons

from 64 to 16384, multiplying by 2 on a customized MLP.

• Stride. We change the stride size from 1 to 4 on VGG19

and AlexNet.

• Optimizer. As the optimizer is implemented as a cuDNN

op, we evaluated whether this can be predicted as well

133

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
ACCURACY FOR OP INFERENCE (C=CONV , B=BIASADD , R=RELU, P=POOLING , M=MATMUL , T=TANH , S=SIGMOID). PRE V. AND W/ VT. ARE SHORT

FOR PRE-VOTING AND WITH VOTING.

Model Phase C M B P R T S Overall
Cust.
MLP

Pre Vt. - 97% - - 98% 98% 98% 97.05%
W/ Vt. - 99% - - 100% 97% 100% 99.38%

ZFNet
Pre Vt. 95% 87% 98% 92% 54% - - 86.25%
W/ Vt 97% 98% 88% 86% 91% - - 92.96%

VGG
16

Pre Vt. 82% 99% 77% 73% 88% - - 84.75%
W/ Vt. 86% 100% 87% 77% 83% - - 85.81%

TABLE VIII
OVERALL ACCURACY FOR HYPER-PARAMETER PREDICTION.HP1, HP2,
HP3, HP4, HP5 REFER TO THE NUMBER OF FILTERS, FILTER SIZE, THE

NUMBER OF NEURONS, STRIDE AND OPTIMIZER.

Hyper-parameters HP1 HP2 HP3 HP4 HP5
Accuracy(%) 95.71 88.1 96.58 95.89 92.63

(regarded as model hyper-parameter). Three optimizers

(Adagrad, Adam and GD) are tested.

After the different hyper-parameter values are profiled to

train Mhp, we test Mhp on our three tested models. Table VIII

shows the accuracy, ranging from 88.1% to 95.89%. The

accuracy of filter size is lower, mainly because different values

have little impact on op’s execution time, making the observed

readings more indistinguishable.

E. Layer Sequence Inference

We evaluate to what extent attackers can recover the whole

layer sequence (including hyper-parameters) with the right

order. In this case, continuous identical ops are collapsed to

one op and layers can be derived based on op combinations.

As such, even there are misaligned ops causing errors in op

inference (e.g., ground-truth and the predicted sequence are

CCBR and CCCBR, resulting in 3 misclassified ops), those

errors can be corrected easily. Table IX shows the results, we

listed 2 rows (ground-truth and predicted structure) for each

model.

We took a closer look at the false predictions and found

they are usually caused by ops with very short execution time.

Specifically, a VGG16 training iteration (the feed-forward

phase) lasts around 7000 ms, consisting of 130 ops. On aver-

age, an op lasts 54 ms (7000/130). In contrast, each spy kernel

only lasts for 16-19ms. Therefore by expectation, the attacker

can sample each op three times. Nonetheless, the 10 shortest

ops last less than 5 ms, meaning that multiple layers would

be squeezed in one spy sample. Fortunately, those short ops

are usually BiasAdd or activation functions like ReLu that

are less critical than conv. The layers can still be correctly

identified even when those short ops are misclassified. We

apply model syntax to edit some incorrect layers, and the final

results are shown in the “Predicted structure” row. MoSConS
is able to achieve 100% accuracy following the right layer

sequence for customized MLP and ZFNet, 95.2% for VGG16.

For hyper-parameter prediction, the accuracy is 100%, 76.9%,

and 82.8%.

F. Performance Impact of the Attack.

We force GPU context-switching by running spy concur-

rently with the victim. As a result, the performance of the

victim DNN is expected to decrease because of the context-

switching penalties. We assess the performance impact by

comparing the victim’s execution time with and without spy

running. To be noticed is that we launch slow-down attacks

with more spy kernels, further dampening the victim’s perfor-

mance.

In our slow-down attack settings, there are 8 kernels used

by the spy program and it takes 20.9 seconds for the victim to

run one VGG16 iteration. In contrast, when no spy is running,

the victim’s execution time is 431.18ms, indicating 48.5 times

slow down. The number of kernels employed by the spy can

be used to adjust the ratio of slow-down. Specifically, with

only one kernel, the victim’s execution time is 637.78ms. As

described in Section IV, as training takes hours or days, the

slow-down attack is not easily noticeable.

VI. DISCUSSION

Limitations. 1) We evaluated MoSConS on Nvidia GeForce

GTX 1080 TI. Due to the expense and timing constraints,

we did not experiment with other GPUs. Also, to avoid legal

issues, we did not test MoSConS on the public cloud. On

the other hand, we believe our attack should be effective on

other GPUs and cloud if the same scheduling and context

switching mechanisms are used and the performance counters

can be read by the spy. 2) Due to spy’s low sampling rate,

misclassifications are prone to occur when an op takes a short

time. We launched slow-down kernels to alleviate this issue

but for the ops that are too short (like ReLu) or executed

at the end of the iteration, the inference accuracy drops. We

will investigate how to address this issue as the next step.

3) MoSConS can reveal some critical hyper-parameters but

not all defined by a model, e.g., shortcut. In addition, the

hyper-parameters not seen by the adversary before cannot be

recovered. 4) So far, MoSConS is designed to infer a model

secret from a single GPU. We will expand MoSConS to multi-

GPU and distributed-learning settings. 5) We tested MoSConS
with two users sharing the same GPU. When more users are

active, the accuracy of MoSConS is expected to decrease

as the kernel execution becomes more non-deterministic. 6)

MoSConS is not supposed to be effective on RNN models

due to their very different designs. 7) MoSConS is effective

on victim models of reasonable complexity, like VGG16. It

is expected to be effective when the model size grows, e.g.,

134

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
OVERALL RESULT (EXPLANATION OF OTHER LETTERS ARE IN TABLE VII). RED LETTERS ARE MISCLASSIFICATIONS. ORANGE LETTERS ARE ABOUT

VERY SHORT OPS (FINISHED WITHIN 0.8MS). AccuracyL AND AccuracyHP ARE ACCURACY FOR THE LAYERS AND HYPER-PARAMETERS.

Model Ground-truth
AccuracyL AccuracyHPPredicted structure

Cust. MLP
M64,R −M512,T −M1024,S −M2048,R −M8192,T −OptimizerGD

M64,R −M512,T −M1024,S −M2048,R −M8192,T −OptimizerGD 100.0% 100.0%

ZFNet
C7,96,2,R − P − C5,256,2,R − P − C3,512,1,R − C3,1024,1,R − C3,512,1,R − P −
M4096,R −M4096,R −M1000,R −OptimizerAdam

C7,96,2,R − P − C3,256,2,R − P − C3,96,1,R − C3,1024,1,R − C3,512,1,X − P −
M4096,X −M4096,X −M1000,X −OptimizerAdam

100.0% 76.9%

VGG16

C3,64,1,R − C3,64,1,R − P − C3,128,1,R − C3,128,1,R − P − C3,256,1,R − C3,256,1,R −
C3,256,1,R − P −C3,512,1,R −C3,512,1,R −C3,512,1,R − P −C3,512,1,R −C3,512,1,R −
C3,512,1,R − P −M4096,R −M4096,R −M1000,R −OptimizerAdam

C3,64,1,R − C3,64,1,R − P − C3,128,1,R − C3,128,1,R − P − C3,256,1,R − C3,64,1,R −
C3,256,1,R − P −C3,512,1,R −C3,512,1,R −C3,128,1,R −X −C3,512,1,R −C5,256,1,P −
C3,512,1,X − P −M4096,X −M4096,X −M1000,X −OptimizerAdam

95.2% 82.8%

VGG19. However, for more complex models like ResNet50

with shortcuts, MoSConS is unlikely to infer the model

structure accurately.

Potential defense. To protect the model secret against

MoSConS, the intuitive approach is to restrict access to

CUPTI. However, as described in Section II-D, even though

Nvidia released a patch [47] as mitigation, it can be bypassed.

As such, we believe more principled defense mechanisms

are needed. Reducing the precision of CUPTI can interfere

with the spy, but again it could introduce side-effect to the

legitimate applications. Alternatively, GPU can run a daemon

process that detects anomalous contention [10]. In addition,

the GPU schedulers (e.g., time-sliced scheduler and warp

scheduler) could be enhanced to protect the critical GPU

applications (e.g., TensorFlow) and reduce the frequency of

preemption by other suspicious applications. We will imple-

ment and evaluate those potential defense mechanisms.

VII. RELATED WORKS

The research about model stealing with side-channel [5],

[13], [23]–[25], [41], [63], [65] has been summarized in

Section I. Naghibijouybari et al. [41] is closest to our work

on GPU but only the neuron number of the input layer

is recovered. For this task, MoSConS can infer the neuron

number of every layer. Below we review other related works.

Confidentiality of machine learning. Our research studies

how machine-learning confidentiality can be breached from

hardware side. Another direction is to look into the weakness

of machine-learning algorithms. Research showed that the

information about data providers [14], [15], properties of the

training data [3], [17], membership of a sample [20], [34],

[56], model parameters [48], [59], [61] can be inferred when

the model developer publishes its model or allows public API

access. An interesting future work could be combining the

attacks at algorithm and hardware layers.

Information leakage on GPU. GPU is widely used for en-

cryption and graph rendering besides machine learning. Prior

works showed that encryption key can be inferred through

timing and power side-channels [27], [28], [35], [50]. Websites

visited by a user can be inferred as well [32], [41], [68] GPU

side-channels have also been exploited for key loggers [30],

row-hammer attacks [16] and building cover-channels [40].

CPU port contention. Our attack introduces contention

on GPU units for information leakage attacks. A similar

contention-based attack has been explored under CPU exe-

cution port [2], [6], showing secrets from OpenSSL can be

leaked. Our study extends the research of contention-based

side-channel by investigating different hardware, i.e., GPU.

VIII. CONCLUSION

In this paper, we systematically analyzed the issue of

information leakage when training a DNN model on a shared

GPU. We found that the GPU context-switching penalty can

be exploited to allow a spy to obtain finer-grained information

of another CUDA application, including DNN ops and hyper-

parameters. By leveraging active slow-down attack and passive

inference based on LSTM models, we are able to achieve good

accuracy for those attack tasks. For future work, we will test

the potential defenses as mentioned and we also call on the

community and stakeholders to come up with new protection

mechanisms schemes to mitigate this risk.

ACKNOWLEDGMENT

The authors would like to thank the insightful reviews and

suggestions from our shepherd Dr. Chengmo Yang and anony-

mous reviewers. The authors also thank Hao Chen and Suprith

Ramanan from UC Irvine for their help. The researchers

from Fudan University are supported by NSFC 61802068

and Shanghai Sailing Program 18YF1402200. This material

is based upon work partially supported by the United States

Office of Naval Research (ONR) under contract N00014-17-1-

2499. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and

do not necessarily reflect the views of the Office of Naval

Research or its Contracting Agents.

135

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016.
USENIX Association.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garcı́a, and Nicola Tuveri. Port contention for fun and
profit. In 2019 IEEE Symposium on Security and Privacy (SP), pages
870–887. IEEE, 2019.

[3] Giuseppe Ateniese, Giovanni Felici, Luigi V Mancini, Angelo Spog-
nardi, Antonio Villani, and Domenico Vitali. Hacking smart machines
with smarter ones: How to extract meaningful data from machine
learning classifiers. arXiv preprint arXiv:1306.4447, 2013.

[4] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V. Krishnamurthy,
Thomas F. La Porta, Patrick D. McDaniel, and Lisa M. Marvel. Mali-
cious co-residency on the cloud: Attacks and defense. In INFOCOM,
pages 1–9. IEEE, 2017.

[5] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
Reverse engineering of neural network architectures through electro-
magnetic side channel. In 28th USENIX Security Symposium (USENIX
Security 19), pages 515–532, Santa Clara, CA, August 2019. USENIX
Association.

[6] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kur-
mus. Smotherspectre: Exploiting speculative execution through port
contention. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, pages 785–800, New
York, NY, USA, 2019. ACM.

[7] BigML. Bigml.com. https://bigml.com/, 2019.

[8] Caffe. Brewing imagenet. https://caffe.berkeleyvision.org/gathered/
examples/imagenet.html, 2019.

[9] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara
Paramakuru. Deadline-based scheduling for gpu with preemption
support. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages
119–130. IEEE, 2018.

[10] Jie Chen and Guru Venkataramani. Cc-hunter: Uncovering covert
timing channels on shared processor hardware. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pages 216–228, Washington, DC, USA, 2014. IEEE Com-
puter Society.

[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.

[12] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. Understanding and optimizing asynchronous low-precision
stochastic gradient descent. In ACM SIGARCH Computer Architecture
News, volume 45, pages 561–574. ACM, 2017.

[13] Vasisht Duddu, Debasis Samanta, D. Vijay Rao, and Valentina E.
Balas. Stealing neural networks via timing side channels. CoRR,
abs/1812.11720, 2018.

[14] Matthew Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic coun-
termeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1322–1333. ACM, 2015.

[15] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end
case study of personalized warfarin dosing. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 17–32, 2014.

[16] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand
pwning unit: Accelerating microarchitectural attacks with the GPU. In
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages 195–210, 2018.

[17] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using
permutation invariant representations. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
619–633. ACM, 2018.

[18] Google. Cloud machine learning engine. https://cloud.google.com/
ml-engine/, 2019.

[19] Google. Tensorflow timeline. https://github.com/tensorflow/tensorflow/
blob/master/tensorflow/python/client/timeline.py, 2019.

[20] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro.
Logan: evaluating privacy leakage of generative models using generative
adversarial networks. arXiv preprint arXiv:1705.07663, 2017.

[21] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. Applied machine learning at facebook: A datacenter
infrastructure perspective. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 620–629.
IEEE, 2018.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[23] Sanghyun Hong, Michael Davinroy, Yigitcan Kaya, Stuart Nevans
Locke, Ian Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor
Dumitras. Security analysis of deep neural networks operating in the
presence of cache side-channel attacks. CoRR, abs/1810.03487, 2018.

[24] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji,
Yufei Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. Neural net-
work model extraction attacks in edge devices by hearing architectural
hints. CoRR, abs/1903.03916, 2019.

[25] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse engineering
convolutional neural networks through side-channel information leaks.
In Proceedings of the 55th Annual Design Automation Conference, DAC
’18, pages 4:1–4:6, New York, NY, USA, 2018. ACM.

[26] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell.
Caffe: Convolutional architecture for fast feature embedding. CoRR,
abs/1408.5093, 2014.

[27] Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. A complete key
recovery timing attack on a GPU. In HPCA, pages 394–405. IEEE
Computer Society, 2016.

[28] Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. A novel side-channel
timing attack on gpus. In ACM Great Lakes Symposium on VLSI, pages
167–172. ACM, 2017.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[30] Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis, Michalis
Polychronakis, and Sotiris Ioannidis. You can type, but you can’t hide:
A stealthy gpu-based keylogger. In Proceedings of the 6th European
Workshop on System Security (EuroSec), 2013.

[31] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-
series extreme event forecasting with neural networks at uber. In
International Conference on Machine Learning, volume 34, pages 1–
5, 2017.

[32] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing
webpages rendered on your browser by exploiting gpu vulnerabilities.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy,
SP ’14, pages 19–33, Washington, DC, USA, 2014. IEEE Computer
Society.

[33] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang.
When good becomes evil: Keystroke inference with smartwatch. In
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 1273–1285, New York, NY,
USA, 2015. ACM.

[34] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng
Wang, Haixu Tang, Carl A. Gunter, and Kai Chen. Understanding
membership inferences on well-generalized learning models. CoRR,
abs/1802.04889, 2018.

[35] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David R. Kaeli.
Side-channel power analysis of a GPU AES implementation. In 33rd
IEEE International Conference on Computer Design, ICCD 2015, New
York City, NY, USA, October 18-21, 2015, pages 281–288, 2015.

[36] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal.
Long short term memory networks for anomaly detection in time series.
In Proceedings, page 89. Presses universitaires de Louvain, 2015.

[37] Microsoft. Lightgbm. https://github.com/microsoft/LightGBM, 2019.
[38] Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-

channel analysis-a survey on measurement factors. IACR Cryptology
ePrint Archive, 2018:676, 2018.

136

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

[39] MXNet. A scalable deep learning framework. https://mxnet.apache.org/,
2019.

[40] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael B. Abu-
Ghazaleh. Constructing and characterizing covert channels on gpgpus.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-
18, 2017, pages 354–366, 2017.

[41] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. Rendered insecure: Gpu side channel attacks are practical.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 2139–2153, New York, NY,
USA, 2018. ACM.

[42] Nvidia. Cuda c++ programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[43] Nvidia. Multi-process service - nvidia developer documentation.
https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service
Overview.pdf, 2018.

[44] Nvidia. Cuda zone. https://developer.nvidia.com/cuda-zone, 2019.

[45] Nvidia. Cupti cuda toolkit documentation. https://docs.nvidia.com/cuda/
cupti/index.html, 2019.

[46] Nvidia. Pascal gpu architecture. https://www.nvidia.com/en-us/
data-center/pascal-gpu-architecture/, 2019.

[47] Nvidia. Security bulletin: Nvidia gpu display driver - february 2019.
https://nvidia.custhelp.com/app/answers/detail/a id/4772, 2019.

[48] Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. International Confer-
ence on Learning Representations, 2018.

[49] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P
Wellman. Sok: Security and privacy in machine learning. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
399–414. IEEE, 2018.

[50] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. CUDA leaks:
a detailed hack for CUDA and a (partial) fix. ACM Transactions on
Embedded Computing Systems (TECS), 15(1):15, 2016.

[51] PyTorch. Cuda semantics pytorch master documentation. https://pytorch.
org/docs/0.3.1/notes/cuda.html\#cuda-streams, 2017.

[52] PyTorch. Pytorch. https://pytorch.org/, 2019.

[53] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: Exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, pages 199–212, New
York, NY, USA, 2009. ACM.

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. Int. J. Comput. Vision, 115(3):211–
252, December 2015.

[55] Pulkit Sharma. 5 amazing deep learning frameworks every data scientist
must know (with illustrated infographic). https://www.analyticsvidhya.
com/blog/2019/03/deep-learning-frameworks-comparison/, 2019.

[56] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
IEEE Symposium on Security and Privacy, pages 3–18. IEEE Computer
Society, 2017.

[57] Karen. Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Conference
on Learning Representations (ICLR), 2015.

[58] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[59] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
USENIX Security Symposium, pages 601–618, 2016.

[60] VMware. Performance and use cases of vmware directpath i/o
for networking. https://blogs.vmware.com/performance/2010/12/
performance-and-use-cases-of-vmware-directpath-io-for-networking.
html, 2010.

[61] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA,
pages 36–52, 2018.

[62] Chen Wang, Xiaonan Guo, Yan Wang, Yingying Chen, and Bo Liu.
Friend or foe?: Your wearable devices reveal your personal pin. In
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’16, pages 189–200, New York,
NY, USA, 2016. ACM.

[63] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know what
you see: Power side-channel attack on convolutional neural network
accelerators. In Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC ’18, pages 393–406, New York, NY,
USA, 2018. ACM.

[64] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine
translation system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

[65] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In 29th USENIX Security Symposium (USENIX Security 20),
Boston, MA, August 2020. USENIX Association.

[66] Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,
pages 818–833. Springer, 2014.

[67] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Home-
Alone: Co-residency detection in the cloud via side-channel analysis. In
32nd IEEE Symposium on Security and Privacy, pages 313–328. IEEE
Computer Society, 2011.

[68] Zhe Zhou, Wenrui Diao, Xiangyu Liu, Zhou Li, Kehuan Zhang, and
Rui Liu. Vulnerable GPU memory management: Towards recovering
raw data from GPU. PoPETs, 2017(2):57–73, 2017.

137

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 24,2021 at 05:51:37 UTC from IEEE Xplore. Restrictions apply.

