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Deep-learning models: Highly Valuable IP

e Deep-learning models are everywhere.
e Large market size.

Computer Vision Speech Recognition Embedded Devices Data Centers
~$2.37 Billion ~$21.5 Billion ~$6.6 Billion ~$20 Billion
Facial Recognition Voice Assistants Consumer Electronics Video Recommendation
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Deep-learning models: Highly Valuable IP

e Designing a deep-learning model with good performance requires great time and effort.
o Deep-learning model structure has a fundamental impact on its performance.
o Some deep-learning models have complex structures.
o Large seach space.
m The search space for VGG16 is 5.4x10*M2 [1].
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[1]. Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveaging shared resource attacks to learn{DNN}architectures. In29th{USENIX}Security Symposium ({USENIX}Security 20), pages 2003-2020, 2020



Deep-learning models: Highly Valuable IP

Designing a deep-learning model with good performance requires great time and effort.
o Deep-learning model structure has a fundamental impact on its performance.
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Deep-learning model training on the cloud

e FPGA has become the dominant hardware to train and run deep-learning models.
e FPGA multi-tenancy.

o  Multiple users may share the same physical FPGA [2-11].

o  Share with same power supply unit or power distribution network.
e |[solation.

o User does not have direct access to other users.

Cloud Service
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Deep-learning model training on the cloud

e Spy and victim share the same FPGA.
e Power side-channel leakage.
e Can an adversary infer deep-learning models by exploiting power side-channel?
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Prior work

Stealing deep-learning model secrets on the cloud through side-channel.

O

Most of them are CPU-based cache side channel.

The research closest to ours was done by Hua et al. [12], and Yuet al[13].
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Complete control of and physical access to the FPGA board.
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Abstract—Neural Network (NN) accelerators are currently
widely deployed in various security-crucial scenarios, including
ural language processing and autonomous
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the importance of masking EM traces for large-scale NN accel-
erators in real-world applications.

1. INTRODUCTION
Neural Networks (NNs) have recently shown tremendous
progress in various real-world applications, ranging across
object recognition [1]-{3], natural language processing [4] and
autonomous vehicles (5], [6]. Additionally, there has been an
increasing effort to deploy large-scale NN models on dedicated
hardware platforms such as GPU, FPGAs, or customized
ASICs in order to improve the performance and efficiency of
data processing systems. Hardware vendors including Xilinx
and Intel spend great efforts collecting a data set., training these
NNs models on it, and developing the NNs accelerators, and
thus want to keep the trained models private and secret.
However, recent studies have demonstrated that severe vul-
nerabilities exist in hardware implementations of these NN ac-
celerators. An adversary, who has no knowledge of the details
of structures and designs inside these accelerators (i.e., black-
box). can effectively reverse engincer the neural networks by

also present that NNs are extremely susceptible to timing side-
channel attacks. In their attack scheme, adversaries recover
the layer's depth by applying timing side-channel information
and exploit a reinforcement leaming technique to search for
the best substitute model with functionality similar to the
victim networks. It is important to note that IP vendors do not
always allow users 10 access these architectural side-channel
information, such as memory and cache due to security and
privacy concems. Therefore, these attacks can not be con-
ducted while targeting NNs protected in this way. To solve this
problem, Batina ef al. [10] propose a new model theft attack
that exploits EM side-channel analysis to effectively reverse
engineer the network characteristics of small-scale mulilayer
perception (MLP) and convolutional neural networks (CNN).
Specifically. the authors perform correlation electromagnetic
analysis (CEMA) using the Hamming weight model to recover
the networks weights. However, uniform weight stting makes
current leakage models, i.c.. Hamming weight and Hamming
distance, slightly deviate actual EM leakages [11]. Consid-
ering the enormous parameters (c.g.. weights) those large-
scale neural network accelerators maintain, this deviation will
significantly degrade the effectiveness of EM based model
theft attacks.

To address these challenges, we present a new black-box
attack that exploits EM side-channel information to effectively
reverse engincer Binarized Neural Networks (BNNs), which
are commonly used NNs for loT/edge devices that apply
binary values for activations and weights. Different from the
previous attacks, in this study we assume the adversary has no
access 10 the exact training data, network architecture, param-
eters, etc, but can only collect EM side-channel information
under inference operations and observe the networks outputs
(e.g. labels or confidence scores).

The key idea of our attack method is that we exploit EM
side-channel information 1o reconstruct the network archi-
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ABSTRACT
A convolutional neural network (CNN) model represents a crucial
iece of intellectual property in many applications. Revealing its
structure or weights would leak confidential information. In this pa
per we present novel reverse-engineering attacks on CNNs running
on & hardware accelerator, where an adversary can feed inputs to
the accelerator and observe the resulting off-chip memory accesses
Our study shows that even with data encryption, the adversary can
infer the underlying network structure by exploiting the memory
and timing side-channels. We further identify the information leak-
age on the values of weights when a CNN
dynamic zero pruning for off-chip memory accesses. Overall
work reveals the importance of hiding off-chip memory access
pattern to truly protect confidential CNN model

1 INTRODUCTION
Convolutional neural networks (CNNs) are quickly becoming an
essential tool in a wide range of machine learning applications.
In many application scenarios, CNN models — both its network
structure and learnable parameters (ie., weights) — need to be
protected as confidential information: (1) for companies that rely
on a CNN to provide a core or value-added service, the underlying
neural network model represents an important piece of intellectual
property: (2) in personalized applications such as digital assistants,
NN models are trained using private data, and the weights need to
be kept confidential for privacy [13]: (3) furthermore, recent studies
on the adversarial network show that an attacker can intentionally
affect the outcome of CNN-based classification and object detection
by perturbing input images when the netwark model is known (5]
This paper investigates reverse-engineering attacks on CNN
‘models exploiting information leaks through memory and timing
side-channels. Specifically. we study attacks on  hardware acceler
ator that is protected by secure processor techniques similar to the
scheme used in Intel SGX [2]. In this setting, an adversary can feed
inputs to a protected computation and observe off-chip accesses.
but cannot observe or change the computation and the internal
state. Surprisingly. we show that an adversary can effectively re
verse engineer both the structure and the weights of an encrypted
CNN model running on a hardware auekuuu that pekorms the
ference (ie. Because the CN.
mape) and parameters (weights) are ofen quite hrgr it s impract
cal o hold all feature maps, weights, and intermediate results in the

Permursice 1o make doptal or hard copwes of all o part of thes woek
clomooum e o gramied withou e provid that copen re st made o diibutod
o prst o copiesbeas thi nctice.

Figure 1: A typical CNN inference accelerator.

on-chip memory of an accelerator. As a result, CNN accelerators
typically store feature maps and weights in off-chip memory and
access them as needed. Even if data values are encrypted. memory
access patterns reveal which memory locations are accessed and
whether each access is a read or a write. In this study, we show
that the memory access patterns expose key pai he net-
work structure such as the number of layers. input/output sizes
of ech ey the s of Sk data dependencies among layers,

tc. Given this information, an attacker can infer a small set of
poasible metwork itrachests by fathar coidering the enscation
time of a CNN accelerator, which indicates the amount of computa-
tion. In our experiments, we demonstrate the proposed attack by
reversing engineering the structures of two popular CNN models
in AlexNet (9] and SqueezeNet (3]

In addition to revealing the network structure. this study shows
that the memory access patterns also leak information on weight
values when dynamic zero pruning is used for off-chip memory
accesses. The optimization is based on the observation that the
feature maps from the intermediate layers of a CNN model contain
a large number of zeros. Recent studies in (1, 11, 12] have shown
that these feature maps can be compressed in DRAM by only storing
non-zero values and the associated indices to significantly reduce
the memory bandwidth usage. Unfortunately, this optimization
leaks the number of zero-valued pixels pruned by the activation
function, which can be leveraged to infer the ratio between each
weight and the bias value. To the best of our knowledge, this paper
represents the first study on reverse engineering of convolutional
neural network models on hardware accelerators, especially in
the context of exploiting the side channel through memory access
patterns

The rest of the paper is organized as follows: Section 2 defines
the assumed threat model: Sections 3 and 4 present two reverse-
engineering attacks on the structure and the weights of a CNN
model and evaluate the effectiveness of the proposed attacks; Sec-
tion 5 di related d ludes the paper




Our work

e First to investigate the remote FPGA side-channel attack on stealing DNN models.
e Cloud scenario.
o Passive attacker.
m  No control of input.
o Covertly.
m No physical access to FPGA instance.



Design of FPGA Power Sensor

e Ring Oscillator (RO) Power Sensor.
o Voltage fluctuations have a prominent impact on the frequency of RO.
o  Previous work [14] shows that the frequency of RO can be treated as power side-channel leak to recover
RSA key.
o The output of last inverter is connected to 16-bit T flip-flop counter.
o  The sum of 20 RO power sensors reading.
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[14]. Mark Zhao and G Edward Suh. FPGA-based remote power side-channel attacks.In2018 IEEE Symposium on Security and Privacy (SP), pages 229-244. IEEE, 2018



Design of FPGA Power Sensor

e Placement of RO power sensors.

o RO power sensors are contrained in a virtual FPGA (slot).

o RO sensors are equally distributed on the board. (More Agressive)
e Reading from the RO power sensors.

o  Sent to a workstation for further analysis through xillybus [15].

= T

| oscillatox oscillator
sensor

a. RO sensors are restricted in a slot. b. RO sensors are equally distributed on the board.
[15]. Xillybus. Xillybus product brief. http://xillybus.com/downloads/xillybus_product_brief.pdf .



DNN Layers and Computational Workload

e Different layers introduce different types of operators and different workloads.
o  Optimized MAC (multiply and accumulation) for FC layer and Conv layers.
o MAX operations by pooling layers.
e Computational workload of three popular layers(The number of MAC operations).
o  Fully-connected (FC) layer.
o  Convolutional (Conv) layer.
o Pooling layer(MAX operations).

Layer Type Hyper- Definition FCmpe =Ny XNy @
Parameter
FC layer N; Number of neurons of the layer; 2 2 .
W, Width of the output feature map CONVmac = Wi” X F* X Di—1 X D; @)
k of the layer;
Conv layer F Size of the filter W; = Wi-1—F+2XP 1 3)
D Depth of output feature map S
* (Number of filters)
Stride Wi-1 —F
Wid - - Wpooling = +1 (4)
W idth of the output feature map S
! of the layer; .
Pooling layer T Size of the filter S<F< & (5)
S Stride 2




Experiment setting

e Experiment platform.
o  Xilinx ZedBoard [16].
o  Xilinx Vivado.
e Deep-learning model inference on FPGA accelerator.
o  DNN models are trained on GPU and weights of model are fixed.
o  Victim DNN runs in the inference stage.

Training platform Testing platform
(GPU) (FPGA)
Weights
RelU  (gffe mmmm) Activation.relu() =)
| [
BiasAdd Bias.Forward()
| |
Pooling Pooling.Max()

*

[16] Xilinx. Zedboard. https://www.xilinx.com/products/boards-and-kits/1-8dyf -11.html.
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Our attack framework

Overview of attack.
o  Profiling.
m Before the actual attack, the adversary profiles a set of models to train the inference models.
o Extraction.
m Use trained inference models to extract model structure of victim deep-learning models.
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Our attack framework MoSRePS

Splitting layers.
Classify samples into ‘NOP’ or ‘BUSY’ by Xgboost machine.

O
O

Split iterations if the number of consecutive ‘NOP’ is above threshold.

sample[0]

sample[1]

sample[2]

sample[3]

sample[4]

sample[5]

sample[6]

sample[N]

I

BUSY

BUSY

BUSY

AN

Gap between layers
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Our attack framework MoSRePS

® Recognize layer type.

o  Convolutional layers, fully-connected layers and Pooling layers.
e C(lassify each ‘BUSY’ into ‘Conv’, ‘FC’ or ‘Pooling’.

o ‘Conv’, ‘FC’ or ‘Pooling’ are short for ‘Convolution’, ‘Fully-connected’ and ‘Pooling layers’.

BUSY BUSY BUSY BUSY BUSY BUSY BUSY BUSY

Conv FC FC FC FC




Our attack framework MoSRePS

® Infer hyper-parameters.

o Infer the hyper-parameters for ‘Conv’, ‘FC’ and ‘Pooling’.
o ‘hp’is short for hyper-parameter.

FC NOP
FClhp] NOP

Filter size Number of neurons Filter size

Number of filers AC Stride

Stride

AC



Our attack framework MoSRePS

Voting.
o  Combine multiple predicted DNN layer sequences to correct the wrong predictions.

1st iteration FC Pooling FC NOP

2nd iteration @ FC Pooling FC NOP

3rd iteration O Pooling FC NOP

4th iteration FC Pooling FC NOP

Voting output FC Pooling FC NOP




Experimental evaluation

Splitting iterations.

o Accuracy is over 96%.
Layer inference.

o  Accuracy reaches 100%.
Hyper-parameter inference.

o  Accuracy is over 94.28%.
Case study on VGG16.

o For layer type and sequence.
= 100% (16/16).

o  For hyper-parameters.
m 94.11% (64/68).
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Our contribution

e First to exploit the FPGA remote power side channel to steal DNN models.
e \We use 8 different classifier models as inference models to infer model secrets.

e Our attack extracts the whole structure of deep-learning models.
o Layer.
m Layertype.
m Layer sequence.
o Layer hyper-parameters.
m  Neuron number.
m Filter size.
m  Filter number.
m  Stride.
o  Activation function(ReLu, Sigmoid and Tanh).
e Achieve high inference accuracy among a wide range of deep-learning models.
o S-layer MLP.
o ZFNet.
o VGG16.



Future work

e FPGA single-tenancy Scenario.

o Giechaskiel et al. [17] proved the power supply unit (PSU) can be exploited to construct
FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covert channels between different
boards.

m  Cross-FPGA model-stealing attack can be one direction in future.
e Model weight inference.

o Hua et al. [12] showed weights can be inferred, but they assume the adversary can feed
input to the CNN inference accelerator.

m  Assuming input data is public and known to the adversary.
e Defense.

o Hiding the power consumption patterns unique to the DNN layers/hyper-parameters.
m  Add supplementary hardware to mask power consumption.
m Embed active fences around each tenant.

o Rejecting the deployment request of suspicious FPGA logic.
m Verify each tenant’'s RTL design or netlist file.

[12] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering convolu-tional neural networks through side-channel information leaks. In2018 55thACM/ESDA/IEEE Design Automation Conference (DAC), pages 1-6. IEEE, 2018.
[17] K Rasmussen, | Giechaskiel, and Jakub Szefer. Capsule: Cross-fpga covert-channe lattacks through power supply unit leakage. In IEEE Symposium on Security and Privacy, volume 1. IEEE, 2020.
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