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Deep-learning models: Highly Valuable IP
● Deep-learning models are everywhere.
● Large market size.
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Embedded Devices
~$6.6 Billion

Consumer Electronics

Self-driving Cars
 

Data Centers
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Deep-learning models: Highly Valuable IP
● Designing a deep-learning model with good performance requires great time and effort.

○ Deep-learning model structure has a fundamental impact on its performance.
○ Some deep-learning models have complex structures.
○ Large seach space.

■ The search space for VGG16 is 5.4×10^12 [1].

AlexNet

[1]. Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveaging shared resource attacks to learn{DNN}architectures. In29th{USENIX}Security Symposium ({USENIX}Security 20), pages 2003–2020, 2020
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Deep-learning model training on the cloud
● FPGA has become the dominant hardware to train and run deep-learning models.
● FPGA multi-tenancy.

○ Multiple users may share the same physical FPGA [2-11].
○ Share with same power supply unit or power distribution network.　

● Isolation.
○ User does not have direct access to other users.



Deep-learning model training on the cloud
● Spy and victim share the same FPGA.　
● Power side-channel leakage.
● Can an adversary infer deep-learning models by exploiting power side-channel?



Prior work
● Stealing deep-learning model secrets on the cloud through side-channel.

○ Most of them are CPU-based cache side channel.
● The research closest to ours was done by Hua et al. [12], and Yuet al[13].

○ Complete control of and physical access to the FPGA board.



Our work
● First to investigate the remote FPGA side-channel attack on stealing DNN models.
● Cloud scenario.

○ Passive attacker.
■ No control of input.

○ Covertly.
■ No physical access to FPGA instance.



Design of FPGA Power Sensor
● Ring Oscillator (RO) Power Sensor.

○ Voltage fluctuations have a prominent impact on the frequency of RO.
○ Previous work [14] shows that the frequency of RO can be treated as power side-channel leak to recover 

RSA key.
○ The output of last inverter is connected to 16-bit T flip-flop counter.
○ The sum of 20 RO power sensors reading.

[14]. Mark Zhao and G Edward Suh. FPGA-based remote power side-channel attacks.In2018 IEEE Symposium on Security and Privacy (SP), pages 229–244. IEEE, 2018



Design of FPGA Power Sensor
● Placement of RO power sensors.

○ RO power sensors are contrained in a virtual FPGA (slot).
○ RO sensors are equally distributed on the board. (More Agressive)

● Reading from the RO power sensors.
○ Sent to a workstation for further analysis through xillybus [15].

a.  RO sensors are restricted in a slot. b.  RO sensors are equally distributed on the board.
[15]. Xillybus. Xillybus product brief. http://xillybus.com/downloads/xillybus_product_brief.pdf .



DNN Layers and Computational Workload
● Different layers introduce different types of operators and different workloads.

○ Optimized MAC (multiply and accumulation) for FC layer and Conv layers.
○ MAX operations by pooling layers.

● Computational workload of three popular layers(The number of MAC operations).
○ Fully-connected (FC) layer. 
○ Convolutional (Conv) layer.
○ Pooling layer(MAX operations).



Experiment setting
● Experiment platform.

○ Xilinx ZedBoard [16].
○ Xilinx Vivado.

● Deep-learning model inference on FPGA accelerator.
○ DNN models are trained on GPU and weights of model are fixed.
○ Victim DNN runs in the inference stage.

ConV

ReLU

BiasAdd

Pooling

MatMul

Training platform
(GPU)

Testing platform
(FPGA) 

Conv.Forward()

Activation.relu()

Bias.Forward()

Pooling.Max()

FC.MAC()

Weights

[16] Xilinx.  Zedboard.  https://www.xilinx.com/products/boards-and-kits/1-8dyf -11.html.



Our attack framework 
● Overview of attack.

○ Profiling.
■ Before the actual attack, the adversary profiles a set of models to train the inference models.

○ Extraction.
■ Use trained inference models to extract model structure of victim deep-learning models.



Our attack framework MoSRePS
● Splitting layers.

○ Classify samples into ‘NOP’ or ‘BUSY’ by Xgboost machine.
○ Split iterations if the number of consecutive ‘NOP’ is above threshold.

sample[0] sample[1] sample[2] sample[3] sample[4] sample[5] sample[6] ... sample[N]

BUSY NOP NOP NOP NOP NOP BUSY ... BUSY

Gap between layers



Our attack framework MoSRePS
● Recognize layer type.

○ Convolutional layers, fully-connected layers and Pooling layers.
● Classify each ‘BUSY’ into ‘Conv’, ‘FC’ or ‘Pooling’.

○ ‘Conv’, ‘FC’ or ‘Pooling’ are short for ‘Convolution’, ‘Fully-connected’ and ‘Pooling layers’.

Conv FC Pooling Pooling Pooling FC FC ... FC

BUSY BUSY BUSY BUSY BUSY BUSY BUSY ... BUSY



Our attack framework MoSRePS
● Infer hyper-parameters.

○ Infer the hyper-parameters for ‘Conv’, ‘FC’ and ‘Pooling’.
○ ‘hp’ is short for hyper-parameter. 

Conv[hp] Conv[hp] Conv[hp] Conv[hp] FC[hp] Pooling[hp] Pooling[hp] ... NOP

Conv Conv Conv Conv FC Pooling Pooling ... NOP

Filter size
Number of filers
Stride
AC

Number of neurons
AC

Filter size
Stride



Our attack framework MoSRePS
● Voting.

○ Combine multiple predicted DNN layer sequences to correct the wrong predictions.

1st iteration Conv Conv Conv Conv FC Pooling FC ... NOP

2nd iteration FC Conv Conv Conv FC Pooling FC ... NOP

3rd iteration Conv Conv Pooling Conv Conv Pooling FC ... NOP

4th iteration Conv Conv Conv Conv FC Pooling FC ... NOP

Voting output Conv Conv Conv Conv FC Pooling FC ... NOP



Experimental evaluation
● Splitting iterations.

○ Accuracy is over 96%.
● Layer inference.

○ Accuracy reaches 100%.
● Hyper-parameter inference.

○ Accuracy is over 94.28%.
● Case study on VGG16.

○ For layer type and sequence.
■ 100% (16/16).

○ For hyper-parameters.
■ 94.11% (64/68).

Ground-truth 

Predicted 
structure

Misprediction for one Conv layer



Our contribution
● First to exploit the FPGA remote power side channel to steal DNN models.
● We use 8 different classifier models as inference models to infer model secrets.
● Our attack extracts the whole structure of deep-learning models.

○ Layer.
■ Layer type.
■ Layer sequence.

○ Layer hyper-parameters.
■ Neuron number.
■ Filter size.
■ Filter number. 
■ Stride.

○ Activation function(ReLu, Sigmoid and Tanh).
● Achieve high inference accuracy among a wide range of deep-learning models.

○ 5-layer MLP.
○ ZFNet.
○ VGG16.



Future work

● FPGA single-tenancy Scenario.
○ Giechaskiel et al. [17] proved the power supply unit (PSU) can be exploited to construct 

FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covert channels between different 
boards.

■ Cross-FPGA model-stealing attack can be one direction in future.
● Model weight inference.

○ Hua et al. [12] showed weights can be inferred, but they assume the adversary can feed 
input to the CNN inference accelerator.

■ Assuming input data is public and known to the adversary.
● Defense.

○ Hiding the power consumption patterns unique to the DNN layers/hyper-parameters.
■ Add supplementary hardware to mask power consumption.
■ Embed active fences around each tenant.

○ Rejecting the deployment request of suspicious FPGA logic.
■ Verify each tenant’s RTL design or netlist file.

[12] Weizhe Hua, Zhiru Zhang, and G Edward Suh.  Reverse engineering convolu-tional neural networks through side-channel information leaks.  In2018 55thACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2018.
[17] K Rasmussen, I Giechaskiel, and Jakub Szefer. Capsule: Cross-fpga covert-channe lattacks through power supply unit leakage. In IEEE Symposium on Security and Privacy, volume 1. IEEE, 2020.
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