
Accuracy-Constrained Efficiency Optimization and GPU Profiling
of CNN Inference for Detecting Drainage Crossing Locations

Yicheng Zhang
University of California Riverside

Riverside, California, USA
yzhan846@ucr.edu

Dhroov Pandey
University of North Texas

Denton, Texas, USA
dhroovpandey@my.unt.edu

Di Wu
Southern Illinois University
Carbondale, Illinois, USA

di.wu@siu.edu

Turja Kundu
University of North Texas

Denton, Texas, USA
turjakundu@my.unt.edu

Ruopu Li
Southern Illinois University
Carbondale, Illinois, USA

ruopu.li@siu.edu

Tong Shu∗
University of North Texas

Denton, Texas, USA
tong.shu@unt.edu

ABSTRACT
The accurate and efficient determination of hydrologic connec-
tivity has garnered significant attention from both academic and
industrial sectors due to its critical implications for environmen-
tal management. While recent studies have leveraged the spatial
characteristics of hydrologic features, the use of elevation models
for identifying drainage paths can be influenced by flow barriers.
To address these challenges, our focus in this study is on detecting
drainage crossings through the application of advanced convo-
lutional neural networks (CNNs). In pursuit of this goal, we use
neural architecture search to automatically explore CNN models
for identifying drainage crossings. Our approach not only attains
high accuracy (over 97% for average precision) in object detection
but also excels in efficiently inferring correct drainage crossings
within a remarkably short time frame (0.268 ms). Furthermore, we
perform a detailed profiling of our approach on GPU systems to
analyze performance bottlenecks.

CCS CONCEPTS
• Computer systems organization → Multiple instruction,
multiple data.

KEYWORDS
CNN inference throughput, GPU profiling, SPP-Net

ACM Reference Format:
Yicheng Zhang, Dhroov Pandey, Di Wu, Turja Kundu, Ruopu Li, and Tong
Shu. 2023. Accuracy-Constrained Efficiency Optimization and GPU Profiling
of CNN Inference for Detecting Drainage Crossing Locations. In Workshops
of The International Conference on High Performance Computing, Network,

∗Corresponding author: Tong Shu (ORCID: 0000-0001-8617-1772), Department of Com-
puter Science and Engineering, University of North Texas, Denton, TX 76207, USA.
This research work is done in the Smart High-performance and Ubiquitous Systems
(SHU’S) lab at the University of North Texas.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624260

Storage, and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3624062.3624260

1 INTRODUCTION
Hydrologic connectivity plays a vital factor in environmental man-
agement such as nutrient transport, watershed-scale water quality,
and eco-protection. One of the commonly used tools for spatially
characterizing hydrologic connectivity is digital elevation mod-
els (DEMs). Despite its widespread usage, studies have indicated
a limitation in using elevation models to delineate drainage fea-
tures, mainly due to the influence of flow barriers such as bridges,
roads, and culverts (Figure 1). This influence leads to inaccuracies
in simulated drainage lines, including incorrect flow directions and
premature termination near these structures [27].

While incorporating drainage crossing locations into elevation
models has been proven to enhance the accuracy ofmodeled drainage
networks, researchers frequently encounter challenges related to in-
ferior data quality and inaccessibility of data quality and access [1].
However, recent progress in deep learning techniques for fast and
accurate detection of terrain features [14, 41] provides a unique
opportunity to detect the locations of drainage crossing. Indeed,
while deep learning techniques are widely applied to scientific re-
search [23, 24, 33], the convolutional neural network (CNN) has
shown its ability to fuel progress in automatic feature selection,
extraction, and generalization [21]. However, as CNN models con-
tinue to grow in depth, the parameters and inference time also
increase. This can make it challenging for researchers to achieve
both fast and accurate detection with high efficiency.

In this study, we propose a novel approach to designing a set of
optimized CNN models for detecting drainage crossing locations.
To enhance the robustness of the network and improve the detec-
tion accuracy and efficiency, SPP-Net, a network structure with
a spatial pyramid pooling (SPP) strategy, has been applied to our
CNN models because of its superior multi-level feature extraction
[30]. The neural network intelligence (NNI) toolkit [19] was uti-
lized to perform neural architecture search (NAS) on these network
structures and hyperparameters, and the inference latency of each
multi-branch model was minimized by the inter-operator sched-
uler (IOS) [3]. Then, an accuracy-constrained inference efficiency
optimization was constructed to identify the most efficient model
within a set of relatively accurate models for a large volume of
inferences. Finally, a further analysis of the hardware utilization of

1780

https://orcid.org/0000-0002-5058-0547
https://orcid.org/0009-0006-7107-6231
https://orcid.org/0000-0001-9493-9067
https://orcid.org/0009-0007-4203-0776
https://orcid.org/0000-0003-3500-0273
https://orcid.org/0000-0001-8617-1772
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624062.3624260
https://doi.org/10.1145/3624062.3624260
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624260&domain=pdf&date_stamp=2023-11-12


SC-W 2023, November 12–17, 2023, Denver, CO, USA Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu

Figure 1: (A) Did not Incorporate Culvert Information, and (B) Incorporated Culvert Information in Modeling [13].

the most efficient model was implemented. The main contributions
of this work are as follows.

• We achieve the accurate detection of drainage crossing by
SPP-Net based CNN models, which proves that SPP-Net is a
promising tool to improve simulated hydrologic connectiv-
ity.

• We show that NNI provides the power to hyperparameter op-
timization and neural architecture search for deep learning,
whichmakes the turning workflow organized by aggregating
and comparing tuning results.

• We use IOS to optimize the hardware utilization of CNN
inference and find the CNN model with the best inference
efficiency under the prediction accuracy constraint.

• We provide a profiling-based performance analysis for the
deep learning inference and identify performance bottle-
necks.

2 MOTIVATION AND BACKGROUND
2.1 Digital Dams and Drainage Crossing
Traditional methods for delineating hydrologic flowlines, such as
digitizing surface water information from aerial photography and
paper maps, are costly and inefficient. As an efficient alternative,
DEM-based hydrologic delineation has been widely adopted to
develop stream features. However, ‘digital dams’ have appeared
to be prominent in such a kind of elevation-based models, which
seriously affects the accurate delineation of stream flowlines. Dig-
ital dam is the obstruction caused by introduced elevation data
of artificial embankments (e.g., bridges, roads, and culverts) and
unexpected depressions (e.g., artificial depressions associated with
interpolation processing), where DEM-derived flow routing is seg-
mented or misled because of unidentified embankment underpasses
and anomalous terrain characteristics [16]. It has been proved that
combining with drainage crossing locations could reduce the ad-
verse effects of flow barriers and improve the spatial connectivity

of HRDEM-derived hydrologic features [13]. However, the exist-
ing drainage crossing dataset is either unavailable or exhibits an
inconsistent format and low quality.

Thus, developing high-quality drainage crossing location datasets
and modeling methods is essential to improve the accuracy of
elevation-derived hydrologic features and their connectivity. The
traditional methods to remove these drainage structures and deter-
mine breached channels include manual digitization [22] and field
collection [29], which are often inefficient and costly, especially
for large study areas. Some other existing approaches, such as the
selective drainage method, were launched to overcome these issues,
using a breaching algorithm to cut through the flow obstructions
and connect drainage network [16]. The shortcoming of this geo-
morphic approach is that it relies on the manual selection of those
depressions caused by drainage structures underneath where wa-
ter is flowing. This selection is mostly based on knowledge-based
approaches, which depend on the source and scale of data and
the specificity of landscapes [20]. Sometimes, the selection may be
arbitrary.

The discussion above indicates there are still challenges to ob-
taining reliable drainage crossing location datasets on large scale.
Since the ability to produce results that are comparable to human
expert performance in fields such as image classification and com-
puter vision [9], CNN models have been regarded as potential tools
to solve the digital dam problem. Existent studies also support that
CNN techniques can be utilized to facilitate the identification of
drainage crossing locations. Iqbal et al. [7] automated the process of
manual visual blockage classification of culverts by applying CNN
models. Wu et al. [34] developed different CNN models for classi-
fying the images that contain the locations of drainage crossing.
As the sizes of the drainage structures in the original dataset are
inconsistent, SPP-net, a network structure with a spatial pyramid
pooling strategy, has been applied to our CNN models to generate
a fixed-length representation regardless of image size and scale
[6]. Furthermore, SPP-net could extract characteristic graphs by

1781



Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Drainage Crossing Detection SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 2: A network structure with a SPP layer [6].

pooling layers with different sizes, which enhances the ability to
capture the feature detail and improve the detection accuracy [30].

2.2 SPP-Net
Existing CNNs require input images with a fixed size. For image
with an arbitrary size, to fit it to the fixed size, image cropping or
warping are commonly used, which may lead to content loss or
distortion and reduce the recognition accuracy. A new network
structure, SPP-Net, was developed to eliminate this requirement
by using a spatial pyramid pooling strategy (Figure 2). It can trans-
form the feature map with any size into a fixed-size feature vec-
tor. By dividing images from finer to coarser levels, the SPP-net
could provide multi-scale information, which boosts the accuracy
of CNN architectures and makes the network more flexible and ro-
bust [12]. Zhang et al. [36] proposed a detection method for defect
insulators based on YOLO and SPP-Net, whose detection accuracy
reached 89%. Wang et al. [30] developed a data-driven method for
vehicle detection based on tiny-YOLOv3, which is improved by
SPP-net. Compared with tiny-YOLOv3, the average accuracy of the
improved algorithm is 7.12% higher, which has reached 91.03%. Wu
[35] proved that SPP-net has better performance than YOLO in
static pedestrian detection situations. Thus, in this study, SPP-Net
was added into CNN architecture to improve model performance
potentially.

3 DATA SET AND PREPROCESSING
3.1 Study Area and Dataset
The study will be conducted at West Fork Big Blue Watershed,
Nebraska (Figure 3). It lies on a gently undulating loess plain with
descending elevation from its west to its east. The landscape in this
watershed is dominated by intensive agriculture. The dense road
networks and depressional wetlands lead to a poorly developed
drainage system. The sources of 4-band Digital Orthophotos used
in this study are from the USGS National Agriculture Imagery
Program (NAIP). The NAIP under the USDA Farm Service Agency
(FSA) acquired color infrared aerial orthophotos at a resolution of
1-meter ground sample distance. 2022 drainage crossing locations
were digitized manually to prepare the training datasets.

Figure 3: Topography and Locations of West Fork Big Blue
Watershed, Nebraska.

3.2 Preprocessing
Since the data size of Orthophotos is over 10 GB, to increase the
computing efficiency, four-band samples with size of 100-by-100
pixels were clipped by using a square bounding box with a size of
100-by-100 meters where the drainage crossing location is at the
center (Figure 4).

4 NEURAL ARCHITECTURE SEARCH
Deep learning models have gained extensive usage across various
tasks, such as computer vision [38] and augmented reality/virtual
reality [26]. Nevertheless, designing an effective structure for these
models demands substantial time and effort. Recently, the archi-
tecture of neural network models has been recognized as valuable
intellectual property [31]. A well-designed deep learning model
structure cannot only enhance researchers’ task accuracy but also
significantly reduce the time and cost associated with training and
testing.

However, achieving optimal performance with deep learning
models through manual tuning is challenging. This is due to the im-
mense search space inherent in deep learning model design [39, 40].
Consequently, researchers have introduced neural architecture
search, which aims to automatically discover optimal neural net-
work architecture configurations that often outperform models
designed by humans. This advancement empowers researchers to
design their models more efficiently, thereby achieving notable cost
savings in the training process.

4.1 Neural Network Intelligence
In this study, we have selected the Neural Network Intelligence
framework, Retiarii [17], as our preferred toolkit. Despite its light-
weight nature, this toolkit boasts substantial capabilities in assisting
model developers with automatic searches within the neural net-
work domain. We opted for the Retiarii framework for the following
reasons. Firstly, Retiarii seamlessly integrates with established deep
learning training frameworks such as TensorFlow and PyTorch,

1782



SC-W 2023, November 12–17, 2023, Denver, CO, USA Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu

Figure 4: Examples of 4-band Orthophoto Samples. (The Circles Point to the Location of Drainage Crossing.)

delivering a versatile platform for our research needs. Addition-
ally, the toolkit features a Just-In-Time (JIT) engine that manages
model instantiation, oversees model training, compiles data for the
exploration strategy’s utilization, and facilitates decision-making
in alignment with the gathered information. Lastly, it provides
a powerful Mutator, empowering model developers to define the
neural network model’s search space and exploration strategies
according to their requirements. Nonetheless, it’s important to note
that Retiarii currently supports NAS exclusively for single GPU
setups. For NAS on multi-GPU systems, which has been addressed
in studies like Weingram et al.[32] and Li et al.[15], we consider
this as a potential area for future research and development.

4.2 Model Search Setup
As described in Section 2.2, SPP-Net comprises three primary com-
ponents: feature engineering, the SPP Layer, and fully-connected
layers. The process begins with multiple convolution layers and
max pooling layers extracting essential features from raw images.
Subsequently, the SPP layer divides the input feature map into three
distinct regions, pooling the features within each region to generate
a fixed-size output, irrespective of the input image’s dimensions.
Finally, the output of SPP-Net is directed to the fully connected
layers for classification and bounding box regression. We explore
the following search spaces for all three components:

• Feature engineering: We define the search space for the
filter size of the first convolutional layer as ranging from 1
to 9 (1, 3, 5, 7, 9).

• SPP layer: We experiment with five different filter sizes for
the first SPP (Spatial Pyramid Pooling) layer, spanning from
1 to 5 (1, 2, 3, 4, 5).

• Fully-connected layers: We customize the feature size for
two fully-connected layers within the following ranges: 128,
256, 512, 1024, 2048, 4096, and 8192.

In our model search strategy, we employ a multi-trial strat-
egy [17] wherein a model evaluator assesses the performance of
each sampled model. This approach necessitates an exploration
strategy to sample models from predefined model space. For our ex-
ploration strategy, we opted for the random search strategy, which
involves randomly selecting an architecture with each iteration.
For the model evaluator, we used FunctionalEvaluator, which is the
default evaluator provided by the Retiarii framework.

5 INFERENCE EFFICIENCY IMPROVEMENT
5.1 Customized Demands on Inference

Efficiency
The incorporation of neural architecture search yielded candidate
models with high prediction accuracy. However, the SPP-Net based
models specialize in taking variable-sized inputs which posits a
huge load on the inference process, resulting in very high inference
latency for large image sizes. Furthermore, our requirement to
process a large number of images requires inference efficiency
optimization of the candidate models.

5.2 Inter-Operator Scheduler for Inference
Efficiency Optimization and Measurement

Inference efficiency can be improved via intra-operator parallelism
(e.g. data parallelism) and themore novel approach of inter-operator
parallelism. Inter-operator parallelism relies on branched structures
within the neural architecture (e.g. Inception cell) within which
branches can be executed simultaneously. The parallel execution
yields an increase in performance over the general sequential ap-
proach taken by traditional deep learning frameworks (e.g. Pytorch
and TensorFlow). We incorporate both of these methodologies by
introducing data parallelism in the form of the standard practice
of batching, and using Inter-Operator Scheduler (IOS) [3] for inter-
operator parallelism. IOS uses blocks (which can be nested struc-
tures) to describe a branched substructure of the neural network,
where the input and output should be convergent. Each block is
optimized for inter-operator parallelism by dividing the execution
into multiple stages which are sequential in nature. Each stage con-
tains the execution of multiple groups in parallel, and each group
is made up of one or more operators of a single branch which are
executed sequentially. The group executions of a stage are syn-
chronized before proceeding to the next stage. IOS uses a dynamic
programming algorithm to determine the best division of a block
into groups and stages and generate an optimal execution schedule.
Our candidate models contain branched adaptive pooling layers
(SPP layer) which can potentially yield an enhancement in inference
efficiency and therefore, we test IOS to determine the maximum
possible performance gain.

1783



Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Drainage Crossing Detection SC-W 2023, November 12–17, 2023, Denver, CO, USA

Search Space

Search 
Strategy

Candidate 
Architecture

Optimal 
Architecture

Inference 
Latency/Efficiency

Inter Operator 
Scheduler

Estimation 
Strategy

Figure 5: Neural architecture search for accuracy-constrained
efficiency optimization.

5.3 Resource-Aware NAS by Incorporating the
Inter-Operator Scheduler

Conventionally, neural architecture search seeks to optimize the
prediction accuracy of a model. However, the nature of our task
requires us to optimize the inference efficiency as well. Therefore,
we incorporated the dual optimization problem into our neural
architecture design process. The pipeline first generated candidate
models with threshold accuracy which were then benchmarked
via IOS to select the most efficient design. Figure 5 illustrates this
process.

5.4 Inference Efficiency Optimization under the
Prediction Accuracy Constraint

We present resource-aware NAS as a dual optimization problem
where the objective function seeks to maximize both inference effi-
ciency (i.e., throughput) and prediction accuracy. We formalize the
problems as: given a neural architecture space 𝑁 , maximize 𝑎(𝑛)
andmaximize 𝑒 (𝑛), 𝑛 ∈ 𝑁 , where 𝑎 and 𝑒 denotes the prediction
accuracy and inference efficiency, respectively. We convert the dual
optimization problem into a single target optimization problem
by transforming one of the objectives to a constraint. Thus, the
new formulation is tomaximize 𝑒 (𝑛), 𝑛 ∈ 𝑁, subject to 𝑎(𝑛) > 𝐴,
where 𝑒 (𝑛) is the updated objective function for inference efficiency
and 𝐴 denotes a threshold accuracy constant.

6 EVALUATION
6.1 Experiment Setup
We trained all SPP-Net candidate models on one NVIDIA RTX
A5500 GPU. The batch size for input images was set at 20. Our
dataset was divided into training and testing sets with an 80/20 ratio.
We employed the stochastic gradient descent (SGD) optimizer, with
a learning rate of 0.005, weight decay set to 0.0005, and momentum
at 0.9.

To evaluate the model performance, we used the average pre-
cision (AP) metric. AP is a commonly used measure for assessing
object detection and instance segmentation algorithms. It gauges
the precision-recall trade-off of a model across varying confidence
thresholds. The equation for the average precision (AP) is given

1 2 4 8 16 32 64

Batch size

0

0.05

0.1

0.15

0.2

0.25

0.3

In
fe

re
n

c
e

 e
ff

ic
ie

n
c
y
(m

s
)

Optimized schedule

Sequential schedule

Figure 6: Inference Efficiency for different batch sizes.

Equation 1:

𝐴𝑃 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑒𝑐𝑎𝑙𝑙𝑖 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑖−1) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 (1)

6.2 Results for Different SPP-Net Models
Using the NNI, we generated three candidate SPP-Net models. Their
respective hyper-parameter configurations are provided in Table 1.
The initial SPP-Net achieved an average precision of 95%. However,
through the hyper-parameter optimization facilitated by NNI, we
managed to enhance the performance further. The resulting model,
SPP-Net #3, exhibited an average precision of 97.40%.

6.3 Inference Latency for Different SPP-Net
Models

We selected the candidate models generated by NNI. Then, we
used IOS to optimize their execution schedule and recorded the
inference latency of the sequential schedule and the optimized
schedule for the batch size of 1. Table 2 shows the inference latency
of the different candidate models. SPP-Net#2 outperforms the other
models and was therefore selected as the final model.

6.4 Inference Efficiency for Different Batch
Sizes

We define inference efficiency as the inference latency of an execu-
tion divided by the batch size of that execution. We used SPP-Net
#2 as the base model and generated optimized schedules for batch
sizes 1, 2, 4, 8, 16, 32 and 64. Figure 6 visualizes the performance
enhancement for the sequential and the optimized schedules. The
model shows a diminishing gain in performance up to batch size 32
due to hardware constraints, which we select as the optimal batch
size.

7 PROFILING-BASED ANALYSIS
To facilitate the performance tuning of GPU applications, GPU
vendors (Nvidia and AMD) and neural network system stacks (Ten-
sorFlow) have introduced execution profilers [37]. As an example,
Nvidia offers Nsight System [8] to aid users in monitoring and
optimizing their CUDA programs. Nsight System provides profil-
ing capabilities in three primary respects: tracking CUDA memory

1784



SC-W 2023, November 12–17, 2023, Denver, CO, USA Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu

Model Hyper-parameters Settings Average Precision
Original SPP-Net 𝐶64,3,1 − 𝑃2,2 −𝐶128,3,1 − 𝑃2,2 −𝐶256,3,1 − 𝑃2,2 − 𝑆𝑃𝑃4,2,1 − 𝐹1024 95.00%
SPP-Net # 1 𝐶64,5,1 − 𝑃2,2 −𝐶128,3,1 − 𝑃2,2 −𝐶256,3,1 − 𝑃2,2 − 𝑆𝑃𝑃4,2,1 − 𝐹1024 96.10%
SPP-Net # 2 𝐶64,3,1 − 𝑃2,2 −𝐶128,3,1 − 𝑃2,2 −𝐶256,3,1 − 𝑃2,2 − 𝑆𝑃𝑃5,2,1 − 𝐹4096 96.70%
SPP-Net # 3 𝐶64,3,1 − 𝑃2,2 −𝐶128,3,1 − 𝑃2,2 −𝐶256,3,1 − 𝑃2,2 − 𝑆𝑃𝑃5,2,1 − 𝐹2048 97.40%

Table 1: Result for different SPP-Net structures. (C=Convolution and the subscripts of C stand for the size of the filter, number
of filters, and stride. F=Fully-connected and the number of neurons in F are shown in subscript. P=Pooling, and its subscripts
represent filter size and stride. SPP=SPP layer, and its subscripts represent filter size. The activation function is omitted due to
space limitations.)

Model Sequential Inference Latency Optimized Inference Latency
Original SPP-Net 0.512 ms 0.268 ms

SPP-Net # 1 0.419 ms 0.379 ms
SPP-Net # 2 0.295 ms 0.236 ms
SPP-Net # 3 0.562 ms 0.427 ms

Table 2: Inference latency for the candidate models.

1 2 4 8 16 32 64

Batch size

19

19.1

19.2

19.3

19.4

19.5

G
P

U
 M

e
m

o
p
s
 T

im
in

g
 U

s
a
g
e
 (

m
s
)

Figure 7: GPU memory usage profiling results for different
batch sizes.

utilization, monitoring CUDA API usage, and performing in-depth
analysis of CUDA kernel profiling.

In our study, we utilize the Nvidia Nsight System to profile the
CNN inference in the IOS. This profiling helps us delve deeply
into the inference execution to identify performance bottlenecks.
Ultimately, we explore strategies for mitigating these bottlenecks.

7.1 CUDA Memory Utilization
During CNN inference, multiple images are processed in the model
to achieve maximum throughput. In this study, we tested batch
sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64). The Nsight
profiling system was employed to profile each inference task. The
GPU under test was the NVIDIA RTX A5500 GPU, boasting 10240
CUDA cores and 24 GB of graphics memory.

As depicted in Figure 7, the profiling results display the GPU
memory timing usage for various batch sizes. The GPU Memops
Timing Usage defines the speed at which data can be read from or
written to the memory on a GPU. This parameter plays a crucial
role in evaluating the overall performance of a GPU. Notably, as the
batch size reaches 16, the GPU memory usage timing decreases and
stabilizes at 19168 ns. Our findings reveal that GPU memory does
not constrain the inference timing, as the available GPU memory
surpasses the requirements for inference images. Even when 64

1 2 4 8 16 32 64

Batch size

0

10

20

30

40

50

60

70

80

P
e

rc
e

n
ta

g
e

(%
)

cudaDeviceSynchronize

cuLibraryLoadData

Figure 8: CUDA API usages for different batch sizes.

images are processed on the GPU, their memory usage remains
considerably lower than the 24 GB capacity.

7.2 CUDA API Utilization
In the preceding subsection, we established that GPU memory does
not serve as a constraint on inference timing. In this section, we
conduct a comprehensive profile of all CUDAAPI usage for different
batch sizes. Here, we only show the two primary CUDA APIs under
scrutiny are cuLibraryLoadData and cudaDeviceSynchronize.

The cuLibraryLoadData API is a standard CUDA function re-
sponsible for loading libraries and data specific to a given code.
Conversely, the cudaDeviceSynchronize API ensures that all previ-
ously executed CUDA calls are completed, guaranteeing that the
device has concluded its tasks before proceeding with subsequent
CPU operations. It acts as a synchronization barrier, ensuring all
CUDA operations are finalized before CPU execution continues.
This function addresses the potential asynchronous behavior be-
tween the CPU and GPU. Due to this asynchrony, the CPU might
attempt to access GPU results not to be computed. The cudaDe-
viceSynchronize function addresses such issues.

Our observations indicate a significant increase in the utilization
of CUDA APIs as batch sizes expand. As depicted in Figure 8, for
a batch size of 1, approximately 80% of the time is consumed by
the cuLibraryLoadData API, while merely 0.4% is attributed to the

1785



Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Drainage Crossing Detection SC-W 2023, November 12–17, 2023, Denver, CO, USA

Batch Size Matrix Multiplication (%) Pooling (%) Conv (%)
1 41.6 14.1 7.7
2 34.8 14.4 9.7
4 39.9 13.5 9.5
8 34.8 13.7 10
16 18.1 17.1 16.6
32 15.7 14.7 13.4
64 7.4 8.6 77.2

Table 3: GPU kernel profiling for different batch sizes.

cudaDeviceSynchronize API. Conversely, as the batch size escalates
to 64, the usage of the cudaDeviceSynchronize API surpasses that of
the cuLibraryLoadData API, accounting for 45.40%.

As the batch size increases, more CUDA streams are initiated
to process the augmented data. However, given the finite nature
of GPU resources, the cudaDeviceSynchronize API is increasingly
employed to ensure synchronization across these multiple CUDA
streams. Despite the consistent memory utilization depicted in Fig-
ure 7, our observation leads us to hypothesize that the bottleneck
could be attributed to limited PCIe bandwidth between the CPU
and GPU during CNN inference. This conjecture gains traction as
synchronization overhead becomes more pronounced. This phe-
nomenon arises from the augmented data being queued for trans-
mission to GPU kernels and subsequently back to CPU memory.
The process of synchronizing this higher volume of data becomes
more resource-intensive, contributing to the observed bottleneck.

7.3 CUDA kernel Profiling Analysis
The GPU kernel profiling outcomes are concisely presented in
Table 3. This table outlines three primary operators: Matrix Multi-
plication, Pooling, and Convolution. These operators correspond
to three distinct layer types: fully-connected layers, pooling layers,
and convolution layers, respectively.

With SPP-Net primarily composed of convolutional layers, a
clear pattern emerges: as the batch size grows, convolutional com-
putations progressively outstrip other operations in terms of their
dominance within the execution timeline. This trend is distinctly
evident in the data outlined in Table 3. As the batch size increases,
the proportion of time allocated to Matrix Multiplication contin-
ues to dwindle while the Convolution operation gains increasing
prominence. In contrast, the Pooling operation displays a more
stable behavior across varying batch sizes. Notably, upon reaching
a batch size of 64, convolutional operations seize the lion’s share of
processing time, constituting a remarkable 77.2% of the total. This
stark contrast with lower batch sizes suggests that this behavior
could be attributed to the highly parallel design intrinsic to GPU
kernels.

However, in scenarios where only the inference task is performed
for a single image, the distribution of processing time varies. Here,
a substantial portion of time, 41.6%, is utilized for Matrix Multiplica-
tion, while convolutional operations consume only 7.7% of the total
time. Given that GPUs are designed to achieve high throughput
and possess exceptionally high data parallelism capabilities, they
are well-suited for processing large batch sizes.

8 RELATEDWORK
8.1 Drainage Crossing Object Detection
Region-based CNN (RCNN) method combines region proposals
with CNNs. Its evolution, Fast R-CNN, achieves near real-time
rates using very deep networks [25], but exposes region proposal
computation as a bottleneck. To overcome this shortage, the latest
incarnation, faster region-based convolutional neural networks
(faster R-CNN) introduces novel region proposal networks (RPNs)
that share full-image convolutional features with object detection
networks, thus making region proposal computations nearly cost-
free [5]. As one of the potential tools for drainage crossing detection,
Li et al. has applied a faster R-CNN toWest Fork Big BlueWatershed
in NE based on 1-meter resolution DEM samples with a size 800
by 800 meters. Pre-trained Resnet-50 was used as the backend
convolutional neural network for this model. The SGD optimizer
was used with learning rate of 0.001, a decay factor of 0.005, and
a momentum of 0.9. A confidence threshold of 0.7 was selected
to filter out low confidence detection. The results show that the
accuracy of the model is 0.882 and the intersection over union (IOU)
of predicted bounding boxes is 0.668.

8.2 Neural Architecture Search Toolkits
Two primary types of NAS toolkits are prevalent, namely Deep-
Hyper [28] and NNI [19]. The first tool provides hyperparameter
tuning and architecture optimization of deep learning models for
research problem-solving in various domain sciences on supercom-
puters [2, 4, 18]. In the second track, NNI has been introduced
as a toolkit for exploring optimal model structures using a single
GPU [17]. Due to its lightweight nature and exceptional perfor-
mance, we have selected NNI as our preferred toolkit for NAS in
this study.

8.3 Inference Efficiency Improvement
The predominant inference efficiency optimization technologies
are Rammer [17], Nimble [11], IOS [3], and HIOS [10]. Rammer
enhances performance by utilizing both inter and intra-operator
optimization and generates an optimized static parallel schedule
during the compilation of the data flow graph which serves to
reduce the scheduling overhead. Nimble offers enhancement by
utilizing ahead-of-time scheduling which generates the optimal
schedule before GPU kernel execution, hence, saving overhead. IOS
uses a dynamic programming algorithm to test all the schedules in
its schedule search space and returns the optimal schedule. HIOS is
a hierarchical inter-operator scheduler for inference latency reduc-
tion by exploiting inter-GPU and intra-GPU operator parallelization
on multi-GPU platforms. While Rammer and Nimble pre-generate
the schedule, saving overhead time, IOS returns the more efficient
schedule and since our task requires the best possible schedules,
even at the computational cost of generating the schedules, we
selected IOS in a single GPU for our project.

9 CONCLUSION
In this study, we present the utilization of SPP-Net for the assess-
ment of hydrologic connectivity. Particularly, we discover that
employing convolutional neural networks leads to a significant

1786



SC-W 2023, November 12–17, 2023, Denver, CO, USA Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu

enhancement in accuracy when detecting drainage crossings. More-
over, we showcase the effectiveness of resource-aware NAS in fine-
tuning the hyperparameters of SPP-Net, resulting in substantial
improvements in inference efficiency. Furthermore, we conduct
in-depth profiling of our detection models on GPU systems and
analyze the performance bottlenecks specific to single GPU setups.

ACKNOWLEDGMENTS
This research is sponsored by National Science Foundation under
Grant No. OAC-2306184 with the University of North Texas and
Grant No. BCS-1951741 with Southern Illinois University.

REFERENCES
[1] Fernando Aristizabal, Lauren E. Grimley, Jerad Bales, Danielle Tijerina, Trey

Flowers, and Edward P Clark. 2018. National Water Center Innovators Program
Summer Institute Report 2018. Consortium of Universities for the Advancement of
Hydrologic Science, Inc. Technical Report No. 15 (2018).

[2] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram
Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable
Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep
Learning Research. In Proc. of ACM/IEEE Intl. Conf. for High Performance Com-
puting, Networking, Storage, and Analysis (SC). 1–33.

[3] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han.
2021. IOS: Inter-Operator Scheduler for CNN Acceleration. In Conf. on Machine
Learning and Systems (MLSys) (MLSys). Virtual, 1–14.

[4] Romain Egele, Prasanna Balaprakash, Isabelle Guyon, Venkatram Vishwanath,
Fangfang Xia, Rick Stevens, and Zhengying Liu. 2021. AgEBO-Tabular: Joint
Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel
Training for Tabular Data. In Proc. of ACM/IEEE Intl. Conf. for High Performance
Computing, Networking, Storage, and Analysis (SC). 1–14.

[5] Ross Girshick. 2015. Fast r-cnn. In Proc. of IEEE Intl. Conf. on Computer Vision
(ICCV). 1440–1448.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Spatial Pyramid
Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. on
Pattern Analysis and Machine Intelligence 37, 9 (2015), 1904–1916.

[7] Umair Iqbal, Johan Barthelemy, and Pascal Perez. 2022. Prediction of Hydraulic
Blockage at Culverts from a Single Image Using Deep Learning. Neural Computing
and Applications 34, 23 (2022), 21101–21117.

[8] Kumar Iyer and Jeffrey Kiel. 2016. GPU Debugging and Profiling with NVIDIA
Parallel Nsight. Game Development Tools (2016), 303–324.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classifica-
tion with Deep Convolutional Neural Networks. Advances in neural information
processing systems 25 (2012).

[10] Turja Kundu and Tong Shu. 2023. HIOS: Hierarchical Inter-Operator Scheduler
for Real-Time Inference of DAG-Structured Deep Learning Models on Multiple
GPUs. In Proc. of IEEE International Conference on Cluster Computing (Cluster).
Santa Fe, NM, USA, 12 pages.

[11] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. 2020. Nimble:
Lightweight and Parallel GPU Task Scheduling for Deep Learning. In Conf. on
Neural Information Processing Systems (NeurIPS). Virtual Event, 1–12.

[12] Lingling Li, Zhengyan Yang, Licheng Jiao, Fang Liu, and Xu Liu. 2019. High-
Resolution SAR Change Detection based on ROI and SPP Net. IEEE Access 7
(2019), 177009–177022.

[13] Ruopu Li, Zhenghong Tang, Xu Li, and Jessie Winter. 2013. Drainage Structure
Datasets and Effects on LiDAR-Derived Surface FlowModeling. ISPRS Intl. Journal
of Geo-Information 2, 4 (2013), 1136–1152.

[14] Wenwen Li, Bin Zhou, Chia-Yu Hsu, Yixing Li, and Fengbo Ren. 2017. Recognizing
Terrain Features on Terrestrial Surface Using a Deep LearningModel: An Example
with Crater Detection. In Proceedings of the 1st Workshop on Artificial Intelligence
and Deep Learning for Geographic Knowledge Discovery. 33–36.

[15] Yuke Li, Hao Qi, Gang Lu, Feng Jin, Yanfei Guo, and Xiaoyi Lu. 2022. Under-
standing Hot Interconnects with an Extensive Benchmark Survey. BenchCouncil
Trans. on Benchmarks, Standards and Evaluations 2, 3 (2022), 100074.

[16] John B Lindsay and KDhun. 2015. Modelling Surface Drainage Patterns in Altered
Landscapes Using LiDAR. Intl. Journal of Geographical Information Science 29, 3
(2015), 397–411.

[17] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-
iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
Holistic Deep Learning Compiler Optimizations with rTasks. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). Virtual, 881–897.

[18] Romit Maulik, Romain Egele, Bethany Lusch, and Prasanna Balaprakash. 2020.
Recurrent Neural Network Architecture Search for Geophysical Emulation. In

Proc. of ACM/IEEE Intl. Conf. for High Performance Computing, Networking, Storage,
and Analysis (SC). 1–14.

[19] Microsoft. 2021. Neural Network Intelligence. https://github.com/microsoft/nni
[20] Sandra K Poppenga, Bruce B Worstell, Jason M Stoker, and Susan K Greenlee.

2010. Using Selective Drainage Methods to Extract Continuous Surface Flow from
1-Meter Lidar-Derived Digital Elevation Data. Technical Report. U.S. Geological
Survey.

[21] Wolfgang Schwanghart, Geoff Groom, Nikolaus J Kuhn, and Goswin Heckrath.
2013. Flow Network Derivation from a High Resolution DEM in a Low Relief,
Agrarian Landscape. Earth Surface Processes and Landforms 38, 13 (2013), 1576–
1586.

[22] Mairead Shore, PNC Murphy, Philip Jordan, P-E Mellander, M Kelly-Quinn, M
Cushen, S Mechan, O Shine, and AR Melland. 2013. Evaluation of a Surface
Hydrological Connectivity Index in Agricultural Catchments. Environmental
modelling & software 47 (2013), 7–15.

[23] Tong Shu, Yanfei Guo, JustinWozniak, Xiaoning Ding, Ian Foster, and Tahsin Kurc.
2021. Bootstrapping In-Situ Workflow Auto-tuning via Combining Performance
Models of Component Applications. In Proc. of ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC). St. Louis,
MO, USA, 1–15.

[24] Tong Shu, Yanfei Guo, JustinWozniak, Xiaoning Ding, Ian Foster, and Tahsin Kurc.
2021. POSTER: In-Situ Workflow Auto-tuning through Combining Component
Models. In Proc. of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP). Seoul, South Korea, 467–468.

[25] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

[26] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, and Jiasi Chen. 2023. Going
through the Motions: AR/VR Keylogging from User Head Motions. In Proc. of
USENIX Security Symposium (Security). Anaheim, CA, 159–174.

[27] Giulia Sofia, Giancarlo Dalla Fontana, and Paolo Tarolli. 2014. High-Resolution
Topography and Anthropogenic Feature Extraction: Testing Geomorphometric
Parameters in Floodplains. Hydrological Processes 28, 4 (2014), 2046–2061.

[28] DeepHype Team. 2018. DeepHyper: A Python Package for Scalable Neural Archi-
tecture and Hyperparameter Search. https://github.com/deephyper/deephyper

[29] Jiahu Wang, Li Li, Zhenchun Hao, and Jonathan J Gourley. 2011. Stream Guiding
Algorithm for Deriving Flow Direction from DEM and Location of Main Streams.
IAHS-AISH Publication 346 (2011), 198–205.

[30] Xiaolan Wang, Shuo Wang, Jiaqi Cao, and Yansong Wang. 2020. Data-Driven
Based Tiny-YOLOv3 Method for Front Vehicle Detection Inducing SPP-net. IEEE
Access 8 (2020), 110227–110236.

[31] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah Al
Faruque. 2020. Leaky DNN: Stealing Deep-Learning Model Secret with GPU
Context-Switching Side-Channel. In Proc. of Annual IEEE/IFIP Intl. Conf. on De-
pendable Systems and Networks (DSN). Valencia, Spain, 125–137.

[32] Adam Weingram, Yuke Li, Hao Qi, Darren Ng, Liuyao Dai, and Xiaoyi Lu. 2023.
xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep
Learning. Journal of Computer Science and Technology 38, 1 (2023), 166–195.

[33] Justin M. Wozniak, Philip Davis, Tong Shu, Jonathan Ozik, Nicholas Collier, Ian
Foster, Thomas Brettin, and Rick Stevens. 2018. Scaling Deep Learning for Cancer
with Advanced Workflow Storage Integration. In Proc. of the 4th Workshop on
Machine Learning in HPC Environments (MLHPC) in conjunction with ACM/IEEE
SC. Dallas, TX, USA, 114–123.

[34] Di Wu, Ruopu Li, Banafsheh Rekabdar, Claire Talbert, Michael Edidem, and
Guangxing Wang. 2023. Classification of Drainage Crossings on High-Resolution
Digital ElevationModels: A Deep Learning Approach. GIScience & Remote Sensing
60, 1 (2023), 2230706.

[35] Jiatu Wu. 2018. Complexity and Accuracy Analysis of Common Artificial Neural
Networks on Pedestrian Detection. In MATEC Web of Conferences, Vol. 232. EDP
Sciences, 01003.

[36] Xibo Zhang, Yan Zhang, Miao Hu, and Xiaoming Ju. 2020. Insulator Defect
Detection based on YOLO and SPP-Net. In Intl. Conf. on Big Data & Artificial
Intelligence & Software Engineering (ICBASE). 403–407.

[37] Yicheng Zhang. 2021. Stealing Deep Learning Model Secret through Remote FPGA
Side-channel Analysis. University of California, Irvine.

[38] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael Abu-Ghazaleh. 2023. It’s all
in your Head(set): Side-Channel Attacks on AR/VR Systems. In Proc. of USENIX
Security Symposium (Security). Anaheim, CA, 3979–3996.

[39] Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Mohammad Abdullah
Al Faruque. 2021. Stealing Neural Network Structure through Remote FPGA Side-
Channel Analysis. In Proc. of ACM/SIGDA Intl. Symposium on Field-Programmable
Gate Arrays (FPGA). Virtual Event, USA, 225.

[40] Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Mohammad Abdullah Al
Faruque. 2021. Stealing Neural Network Structure Through Remote FPGA Side-
Channel Analysis. IEEE Trans. Inf. Forensics Secur. 16 (2021), 4377–4388.

[41] Xiran Zhou, Wenwen Li, and Samantha T Arundel. 2019. A Spatio-Contextual
Probabilistic Model for Extracting Linear Features in Hilly Terrains from High-
Resolution DEM Data. Intl. Journal of Geographical Information Science 33, 4
(2019), 666–686.

1787

https://github.com/microsoft/nni
https://github.com/deephyper/deephyper


Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Drainage Crossing Detection SC-W 2023, November 12–17, 2023, Denver, CO, USA

A ARTIFACT APPENDIX
A.1 Abstract
Our purpose for providing this artifact is to make our results repro-
ducible. We have three main results:

• Prediction Accuracy: We used neural architecture search
(NAS) to explore our model space for models with best accu-
racy results.

• Inference Efficiency: We utilized inter-operator scheduler
(IOS) [3] to determine best schedules for the NAS-generated
models and choose the optimal inference batch size.

• GPU Performance Profiling: We utilized nsys to profile
and analyse GPU performance metrics when we choose dif-
ferent batch sizes.

A.2 Hardware dependencies
Dell Precision 5820 Tower Workstation with the NVLink Nvidia
RTX A5500 GPU

A.3 Software dependencies
• CUDA 12.2.14
• cuDNN 8.9.5
• Python 3.11
• numpy 1.24.3
• torchvision 0.14.1+cu117
• matplotlib 3.7.1
• PyTorch 2.0
• NNI 2.0
• IOS
• CMake >=3.10

A.4 Installation
Firstly, clone the GitHub repository and then install the required
packages.
git clone https://github.com/SHUs-Lab/SHDA23YZ.git
pip install -r requirements.txt

A.5 Evaluation
Neural Architecture Search. First, download the data.zip file pro-

vided in the GitHub repository and unzip it. Next, execute ob-
ject_detection.py to initiate the training of SPPNet. Additionally,
there is an option to run sppnet_search.py to conduct a neural
architecture search. For details on the NAS search space, refer to
Section 4.2.

IOS. The file IOS_Model.py contains the SPP-Net model in IOS
code. Execute the file to get the optimized schedule for the model.
To test for different models in the model space, edit the file as
follows:

• Change hyperparameters based on the candidate model in
lines 9-14

• Change the batch sizes in lines 33, 39, 41
For more details on IOS scheduling refer to Section 5.2

GPU Performance Profiling. To get the GPU profiling information,
use the command:

nsys profile --stats=true --force-overwrite true -o
[report file name] python [IOS_Model].py

1788


	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Digital Dams and Drainage Crossing
	2.2 SPP-Net

	3 Data Set and Preprocessing
	3.1 Study Area and Dataset
	3.2 Preprocessing

	4 Neural Architecture Search
	4.1 Neural Network Intelligence
	4.2 Model Search Setup

	5 Inference Efficiency Improvement
	5.1 Customized Demands on Inference Efficiency
	5.2 Inter-Operator Scheduler for Inference Efficiency Optimization and Measurement
	5.3 Resource-Aware NAS by Incorporating the Inter-Operator Scheduler
	5.4 Inference Efficiency Optimization under the Prediction Accuracy Constraint

	6 Evaluation
	6.1 Experiment Setup
	6.2 Results for Different SPP-Net Models
	6.3 Inference Latency for Different SPP-Net Models
	6.4 Inference Efficiency for Different Batch Sizes

	7 Profiling-based Analysis
	7.1 CUDA Memory Utilization
	7.2 CUDA API Utilization
	7.3 CUDA kernel Profiling Analysis

	8 Related Work
	8.1 Drainage Crossing Object Detection
	8.2 Neural Architecture Search Toolkits
	8.3 Inference Efficiency Improvement

	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Hardware dependencies
	A.3 Software dependencies
	A.4 Installation
	A.5 Evaluation


