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Detecting Drainage Crossing Locations

• Drainage crossing detection is critical for environmental management.
• Nutrient transport.

• Assessing sustainability of downstream.

• Tracking watershed-scale water quality, etc.

2
Drainage crossing in real world

Drainage crossing in digital view



Challenges for Detecting Drainage Crossing

• Inaccuracies in detection via elevation-based delineation.

• Slow detection via traditional CNN-based detection.
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Research question: can we detect drainage crossing accurately 
and efficiently?



Our Work Overview

• Developing a set of optimized CNN models for detecting drainage 
crossing accurately.

• Performing neural architecture search and inter-operator scheduler to 
make detection more efficiently.

• Profiling performance for detecting drainage crossing and 
identifying performance bottlenecks.
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GPU profiling



Study Area and Datasets

• Study Area.
• West Fork Big Blue Watershed, Nebraska.

• Dominated by intensive agriculture.

• Relatively level topography.

• Dense road networks.

• Datasets.
• 2022 culverts were located manually.

• Each sample contains one culvert which is with size of 100-meter by 100-meter.
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Accuray-Constrained CNN models

• Spatial Pyramid Pooling (SPP-Net).
• Feature extraction.

• SPP layer.
• Sub-regions of various sizes.

• Max-pooling within each sub-region.

• Spatial information at different scales.

• Fully connected layers.
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Neural Architecture Search for SPP-Net

• Neural Architecture Search (NAS).
• Automatically tuning model structure to achieve optimal performance.

• Neural Network Intelligence framework, Retiarii [1].

• Determining search space.
• Feature engineering: Filter size of the first convolutional layer as ranging from 1 

to 9 (1, 3, 5, 7, 9).

• SPP layer: Filter sizes for the first SPP layer, spanning from 1 to 5 (1, 2, 3, 4, 5).

• Fully-connected layers: Feature size for two fully-connected layers within the 
following ranges: 128, 256, 512, 1024, 2048, 4096, and 8192.

7[1]. Zhang, Quanlu, et al. "Retiarii: A deep learning {Exploratory-Training} framework." 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20) . 2020.



Neural Architecture Search for SPP-Net

• Three candidate models.
• C=Convolution and the subscripts of C stand for the size of the filter, numbers of 

filters, and stride.

• F=Fully-connected and the number of neurons in F are shown in subscript.

• P=Pooling, and its subscripts represent filter size and stride.

• SPP=SPP layer, and its subscripts represent filter size.
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Inter-operator scheduling for SPP-Net

• Inter-operator scheduling (IOS) [2].
• Optimizing the tasks via increasing parallelism in the algorithm.

• E.g. tiled matrix multiplication.

• Increasing data parallelism. 
• E.g. Batching.

• Speed-up evaluation.

9[2]. Ding, Yaoyao, et al. "IOS: Inter-operator scheduler for CNN acceleration." Proceedings of Machine Learning and Systems 3 (2021): 167-180.



GPU Performance Profiling 

• Profiling CNN inference and identify the performance bottleneck.

• Performance analysis on
• GPU memory.

• CUDA API utilization.

• CUDA kernels.

• Profile GPU performance via Nvidia Nsight system.
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GPU Performance Profiling – GPU memory

• GPU memory utilization when changing batch size.
• Profile GPU performance via Nvidia Nsight.

• Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).

• Observation: stable utilization when changing batch size.
• GPU memory does not constrain the inference timing.
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GPU Performance Profiling – CUDA API

• Focusing on two primary API.
• cuLibraryLoadData and cudaDeviceSynchronize.

• Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).

• Bottleneck may due to limited PCIe bandwidth between CPU and GPU.
• CudaDeviceSynchronize surpasses cuLibraryLoadData when batch size increases 

to 64.
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GPU Performance Profiling – CUDA Kernels

• Focusing on three CUDA kernels.
• Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).

• Observation: When batch size increases, MatMul decrease and Conv 
increase.

• SPP-Net primarily composed of convolutional layers.
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Conclusion

• Accuracy-constrained efficiency optimization for detecting drainage 

crossing.

• Neural architecture search for accuracy-optimized CNN models.

• Inter-operator scheduler to accelerate speed of CNN inference.

• Detailed GPU performance analysis for CNN inference.
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Thank you!
Any questions?

Yicheng Zhang

yzhan846@ucr.edu

https://yichez.site

mailto:Yzhan846@ucr.edu
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