

Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Detecting Drainage Crossing Locations

<u>Yicheng Zhang</u>¹, Dhroov Pandey², Di Wu³, Turja Kundu²,

Ruopu Li³, Tong Shu²

¹University of California, Riverside

²University of North Texas

³Southern Illinois University

SIU Southern Illinois University

Detecting Drainage Crossing Locations

- Drainage crossing detection is critical for environmental management.
 - Nutrient transport.
 - Assessing sustainability of downstream.
 - Tracking watershed-scale water quality, etc.

Drainage crossing in real world

Drainage crossing in digital view

Challenges for Detecting Drainage Crossing

- <u>Inaccuracies</u> in detection via elevation-based delineation.
- <u>Slow detection</u> via traditional CNN-based detection.

Our Work Overview

- Developing a set of optimized CNN models for detecting drainage crossing accurately.
- Performing neural architecture search and inter-operator scheduler to make detection more efficiently.
- Profiling performance for detecting drainage crossing and identifying performance bottlenecks.

Study Area and Datasets

- Study Area.
 - West Fork Big Blue Watershed, Nebraska.
 - Dominated by intensive agriculture.
 - Relatively level topography.
 - Dense road networks.
- Datasets.
 - 2022 culverts were located manually.
 - Each sample contains one culvert which is with size of 100-meter by 100-meter.

Accuray-Constrained CNN models

- Spatial Pyramid Pooling (SPP-Net).
 - Feature extraction.
 - SPP layer.
 - Sub-regions of various sizes.
 - Max-pooling within each sub-region.
 - Spatial information at different scales.
 - Fully connected layers.

Neural Architecture Search for SPP-Net

- Neural Architecture Search (NAS).
 - Automatically tuning model structure to achieve optimal performance.
 - Neural Network Intelligence framework, Retiarii [1].
- Determining search space.
 - Feature engineering: Filter size of the first convolutional layer as ranging from 1 to 9 (1, 3, 5, 7, 9).
 - SPP layer: Filter sizes for the first SPP layer, spanning from 1 to 5 (1, 2, 3, 4, 5).
 - Fully-connected layers: Feature size for two fully-connected layers within the following ranges: 128, 256, 512, 1024, 2048, 4096, and 8192.

Neural Architecture Search for SPP-Net

- Three candidate models.
 - C=Convolution and the subscripts of C stand for the size of the filter, numbers of filters, and stride.
 - F=Fully-connected and the number of neurons in F are shown in subscript.
 - P=Pooling, and its subscripts represent filter size and stride.
 - SPP=SPP layer, and its subscripts represent filter size.

Model	Hyper-parameters Settings	Average Precision
Original SPP-Net	$C_{64,3,1} - P_{2,2} - C_{128,3,1} - P_{2,2} - C_{256,3,1} - P_{2,2} - SPP_{4,2,1} - F_{1024}$	95.00%
SPP-Net # 1	$C_{64,5,1} - P_{2,2} - C_{128,3,1} - P_{2,2} - C_{256,3,1} - P_{2,2} - SPP_{4,2,1} - F_{1024}$	96.10%
SPP-Net # 2	$C_{64,3,1} - P_{2,2} - C_{128,3,1} - P_{2,2} - C_{256,3,1} - P_{2,2} - SPP_{5,2,1} - F_{4096}$	96.70%
SPP-Net # 3	$C_{64,3,1} - P_{2,2} - C_{128,3,1} - P_{2,2} - C_{256,3,1} - P_{2,2} - SPP_{5,2,1} - F_{2048}$	97.40%

Inter-operator scheduling for SPP-Net

- Inter-operator scheduling (IOS) [2].
 - Optimizing the tasks via increasing parallelism in the algorithm.
 - E.g. tiled matrix multiplication.
 - Increasing data parallelism.
 - E.g. Batching.
- Speed-up evaluation.

Model	Sequential Inference Latency	Optimized Inference Latency	
Original SPP-Net	0.512 ms	0.268 ms	
SPP-Net # 1	0.419 ms	0.379 ms	
SPP-Net # 2	0.295 ms	0.236 ms	
SPP-Net # 3	0.562 ms	0.427 ms	

GPU Performance Profiling

- Profiling CNN inference and identify the performance bottleneck.
- Performance analysis on
 - GPU memory.
 - CUDA API utilization.
 - CUDA kernels.
- Profile GPU performance via Nvidia Nsight system.

GPU Performance Profiling – GPU memory

- GPU memory utilization when changing batch size.
 - Profile GPU performance via Nvidia Nsight.
 - Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).
- Observation: stable utilization when changing batch size.
 - GPU memory does not constrain the inference timing.

GPU Performance Profiling – CUDA API

- Focusing on two primary API.
 - cuLibraryLoadData and cudaDeviceSynchronize.
 - Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).
- Bottleneck may due to limited PCIe bandwidth between CPU and GPU.
 - *CudaDeviceSynchronize* surpasses *cuLibraryLoadData* when batch size increases to 64.

GPU Performance Profiling – CUDA Kernels

- Focusing on three CUDA kernels.
 - Testing batch sizes ranging from 1 to 64 (1, 2, 4, 8, 16, 32, and 64).
- Observation: When batch size increases, MatMul decrease and Conv increase.
- SPP-Net primarily composed of convolutional layers.

Batch Size	Matrix Multiplication (%)	Pooling (%)	Conv (%)	
1	41.6	14.1	7.7	
2	34.8	14.4	9.7	
4	39.9	13.5	9.5]
8	34.8	13.7	10	
16	18.1	17.1	16.6	
32	15.7	14.7	13.4]
64	7.4	8.6	77.2	

Conclusion

- Accuracy-constrained efficiency optimization for detecting drainage crossing.
- Neural architecture search for accuracy-optimized CNN models.
- Inter-operator scheduler to accelerate speed of CNN inference.
- Detailed GPU performance analysis for CNN inference.

Thank you! Any questions?

Yicheng Zhang

yzhan846@ucr.edu

https://yichez.site