Going through the motions: AR/VR keylogging from user head motions

Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh, Jiasi Chen

What are virtual reality head-mounted displays?

A display worn on the head!

- Tracks the "pose" of the head.
- Displays 3D computer graphics so they appear to the user's eyes as if they were actually there
- Untethered mobile device

Apple Vision Pro (announced June 2023)

Applications:

VFRSINF

- Games, public safety, workspaces, medicine, etc.
- Telepresence, socialization

Key Ideas

Key Challenge: What new *privacy issues* are raised by a user wearing a VR headset and *entering sensitive information?*

Key Contribution:

We demonstrate an *attack* using the freely available *head movement tracking data* to *infer what words* a user is typing, by training a ML model on real user data traces.

Example video of user typing in VR

- Observations
 - Users move their heads to see what they are typing in VR
 - Even if using hands for typing, the head is still involved
- Is it possible to accurately guess typed words from head movements?

https://drive.google.com/file/d/1hOGYe1dlrBI-8fcU1jPyT4YyZx48zp9B/view?usp=sharing

Background on VR head pose tracking

Six degrees of freedom tracking:

- Position (x,y,z) (m/sec²)
- Rotation (yaw, pitch, roll) (rad/sec)

Sensed by headset's gyroscope, accelerometer, and cameras.

Examples of user head pose traces

Is it possible to accurately guess typed words from head pose?

Threat Model

Popular VR programming environments (e.g., Unity) provide all apps with real-time head pose

- Malicious background app records 1) head pose
- User types sensitive data 2) 3)
- Background app infers sensitive typed data

No special permissions needed by attacker

1) Foreground App 2) Background App 3) Virtual keyboard

4) Text Entry Field 5) Handheld Controller

Cross-modality attack: differences from related work

Head-Gaze Commit [1]		Hand Tracking [2]	
Input Method	Tracked Data	Input Method	Tracked Data
Head pose + button press	Head pose + button press	Hand pose	Hand pose

Going Through the Motions (Ours)					
Input Method	Tracked Data				
Hand pose Cros	s-Modal! Head pose				

[1] Shiqing Luo et al: Keystroke inference on mixed reality head mounted displays. *IEEE VR*, 2022.
 [2] Ülkü Meteriz-Yıldıran et al: A keylogging inference attack on air-tapping keyboards in virtual environments. *IEEE VR*, 2022.

Overview of framework

Challenge: Determining word boundaries

Idea: Can machine learning help determine word boundaries?

Segmenter design

VERSIDE

UC

Evaluation setup

- Data collection app
 - (1) The background app records the headset sensor readings even it is not in focus
 - (2) Foreground keyboard
 - (3) Sentence prompt
 - (4) Text input
 - (5) System controller (untracked)
 - (6) Background app controller (frozen)
- User study
 - Ο
 - Ο
 - Collected traces from ~20 participants ~400 minutes of recorded head pose frames 60+ unique words (common 2 and 6-letter words) Ο
 - Over 600 total words typed Ο

Evaluation setup: Machine learning models

Tried many machine learning methods

- Random: Random guess from the sets of words or character pairs
- KNN with time warping
- ROCKET: Popular time series library
- CNN, CNN+ (winner!)
 - Treat 6DoF pose over time as an image
 - . 6xTime pixels per word sample
- Others
 - Various feature engineering tricks (1st order statistics_
 - Key timing correlation

Results: Word and character pair classifier

Word classification

(all users)

Method	Top-1 accuracy	Top-5 accuracy
Random	0.025	0.125
ROCKET	0.289	0.675
CNN	0.353	0.710
CNN+	0.400	0.820

 \rightarrow Word classifier significantly outperforms random guesses

Character pair classification (all users)

Method	Top 1 accuracy	Top 5 accuracy
Random	0.022	0.111
KNN	0.18	0.48
ROCKET	0.20	0.54
CNN	0.23	0.58
CNN+	0.33	0.72

Word classification

(personalized attack on single user)

Method	Top-1 accuracy	Top-5 accuracy
Random	0.05	0.25
ROCKET	0.18	0.66
CNN	0.75	0.99
CNN+	0.65	0.92

 \rightarrow Individuals have highly repeated patterns of typing unique to themselves

See paper for more results.

 \rightarrow Character pair classifier accuracy is lower, can still help reduce the search space for password cracker

Do simple mitigations work?

Not promising!

Better isolation between applications is needed

• Example: System renders a placeholder background while access to head tracking data is cut off.

UC RIVERSIDE

Limitations

- Sensitive to cascading errors in the end-to-end attack

 → Use other methods for word boundary estimation
- Need to update the word corpus in training dataset with new words
- Users' familiarity with VR affects their typing behavior
 Some users naturally move their heads less

Thank you! Questions?

More XR Security from us: Thursday, Aug 10th @ 1:30pm "It's All Fun and Games Until...", Track 6

