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Multi-GPU Systems

* Multi-GPU Systems: Widely used across various fields.
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Outline

e Background: Multi-GPU interconnect.

* Threat model and leakage vectors.
* Cross-GPU covert channel attacks.
* Cross-GPU side channel attacks.

* Mitigation.




Background: Multi-GPU interconnect

* NVLink: High-speed, high-bandwidth interconnect by NVIDIA.
* Direct Links: Supports CPU-to-GPU and GPU-to-GPU connections.
 Bidirectional: Each link has two sublinks, one for each direction.

* PCle: A serial expansion bus standard for connecting a computer to
one or more peripheral devices.

>

NVIDIA.

https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
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Known Side-channel Attacks on GPU

* Previous GPU attacks focused on a single GPU.
* This required the co-location of the victim and the spy on the same GPU.

* “Spy in the GPU-box” [ISCA’23] demonstrated a prime and probe
attack on remote GPU’s 12 cache.

e But they did not explore the interconnects between GPUs.
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Threat model

* No need for co-location.
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Leakage Vectors: Contention-based

 Contention on a shared NVLink can lead to an increase in data
transfer.
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Leakage Vectors: Contention-based

 Contention measurement on NVLink.
* Contention direction influence.

Victim Victim
data access direction data access direction
data access direction data access direction

Contention happens!



Leakage Vectors: Contention-based

e Contention measurement on NVLink.

* Contention size influence.
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Leakage Vectors: Leaky Counter-based

* Prior work exploits GPU performance counters as side channel
leakages.

* NVLi

ink-related Performance Counters.
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Abstract—Embedded systems for edge computing are getting
more powerful, and some are equipped with a GPU to enable
on-device deep neural network (DNN) learning tasks such as
image classification and object detection. Such DNN-based
applications frequently deal with sensitive user data, and
their i are property to be
protected. We investigate a potential avenue of fingerprinting
attack to identify the (running) DNN model architecture
family (out of state-of-the-art DNN categories) on CPU-GPU
edge devices. We c‘(plmt a stealthy analysis of aggregate

ystem-level side such as memory, CPU,
and GPU usage available at the user-space level. To the best
of our knowledge, this is the first attack of its kind that
does not require physical access and/or sudo access to the

victim device and only collects the system traces passively,
as opposed to most of the existing reverse-engineering-based
DNN model architecture extraction attacks. We perform
feature selection analysis and supervised machine learning-
based classification to detect the model architecture. With a
combination of RAM, CPU, and GPU features and a Random
Forest-based classifier, our proposed attack classifies a known
DNN model into its model architecture family with 99%
accuracy. Also, the introduced attack is so transferable that
it can detect an unknown DNN model into the right DNN
architecture category with 87.2% accuracy. Our rigorous
feature analysis illustrates that memory usage (RAM) is
a critical feature for such fingerprinting. Furthermore, we
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exhibit the capability of platform portability of the attack.
Also, we investigate the robustness of the proposed attack
to varying background noises and a modified DNN pipeline.
Besides, we exhibit that the leakage of model architecture
family information from this stealthy attack can strengthen
an adversarial attack against a victim DNN model by 2x.
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Abstract
As deep neural networks (DNNs) continue their reach into a
wide range of application domains, the neural network ar-
chitecture of DNN models becomes an increasingly sensitive
subject, due to either intellectual property protection or risks
of adversarial attacks. Previous studies explore to leverage
architecture-level events disposed in hardware platforms to
extract the model architecture information. They pose the
following limitations: requiring a priori knowledge of victim
models, lacking in robustness and generality, or obtaining
incomplete information of the victim model architecture.
Our paper prop Dy iffer, a learning-based model
extraction framework to obtain the complete model architec-
ture information without any prior knowledge of the victim
model. It is robust to architectural and system noises intro-
duced by the complex memory hierarchy and diverse run-
time system optimizations. The basic idea of DeepSniffer is to
learn the relation between extracted architectural hints (e.g.,
volumes of memory reads/writes obtained by side-channel
or bus snooping attacks) and model internal architectures.

(without network architecture knowledge) to 75.9% (with
extracted network architecture). The DeepSniffer project has
been released in Github'.
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« Computing methodologies — Machine learning; - Se-
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1 Introduction

Leaky DNN: Stealing Deep-l Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and Arm SoCs
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Scaling (DVFS) to break constant-time code [50, 67] and even
mounting electromagnetic attacks via audio interfaces [32].
These software-based analog attacks pose a paradigm shift
in side channel research, as they allow attackers to by
microarchitectural-attack countermeasures previously consid-
ered sufficient to mitigate software-based side channels.

Another change brought about in the recent evolution of
computing hardware is the departure from x86-based archi-
tectures as the sole source of high performance computing.
Indeed. the past few years have seen the introduction of highly-
performant Arm-based hardware, as well as a steady growth
in the capabilities and integration of GPUs. Aiming to create
thinner, lighter, and more energy efficient devices, modern
CPUs and GPUs are forced to balance a delicate three-way
tradeoff between power consumption, heat dissipation and
execution speed (frequency). While exceptions do exist [22],
the side channel implications of the DVFS mechanism were
primarily studied on (properly cooled and powered) Intel plat-
forms [49, 50, 67], despite the increased reliance on DVFS in
GPUs and high-performance Arm SoCs.

Thus, in this paper we study the following main questions:

Are software-based physical side channels present on
GPUs and high-end Arm SoCs? What would it take to create
such attacks and what information can be extracted using it?



Leakage Vectors: Leaky Counter-based

 NVLink counters.

Category Counter Name

Throughput nvlinj receive/transmit] throughput

User nvlink_user_data] received/transmitted| nvlink_user_write_data_transmitted, nvlink_user_response_data_received
Total nvlink_total data_received/transmitted, nvlink_total_response_data_received, nvlink_total write_data_transmitted
Atomic operation | nvlink_total/user_nratom_data_transmitted, nvlink_total/user_ratom_data_transmitted

e Observation 1: The NVLink receive/transmit attributes reveal NVLink
data transaction direction.

If Receiver counters > Transmit counters:

If Receiver counters < Transmit counters:
NVLmk Channels

(=) (Victim) & (spy) 12



Leakage Vectors: Leaky Counter-based

e User vs Total.

Category Counter Name

Throughput nvlink _receive/transmit_throughput

User nvlin{ user Hata_received/transmitted, nvlink write_data_transmitted, nvlink_user_response_data_received
Total nvlin ‘ data_received/transmitted, nvlink] totall response_data_received, nvlink_total_write_data_transmitted
Atomic operation | nvlink_total/user_nratom_data_transmitted, nvlink_total/user_ratom_data_transmitted

* Observation 2: When NVLink is shared, NVLink total counters reveal
all NVLink data transaction patterns.
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Outline

* Background: Multi-GPU interconnect.

* Threat model and leakage vectors.

* Cross-GPU covert channel attacks.

* Cross-GPU side channel attacks.

* Mitigation.
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Cross-GPU Covert Channel Attacks

* Sender and receiver share NVLink interconnect.
e To signal bit ‘1”:
* Sender transfers data via NVLink to force congestion.
* To signal bit ‘0’:

e Sender idles for a pre-defined duration.

@ (Sender) @ (Receiver)

NVLink Channels



Cross-GPU Covert Channel Attacks

e Covert message (“Hello,NVLink!”).
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Cross-GPU Covert Channel Attacks

e Bandwidth and error rate.
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Outline

* Background: Multi-GPU interconnect.

* Threat model and leakage vectors.
* Cross-GPU covert channel attacks.

* Cross-GPU side channel attacks.

* Mitigation.
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Cross-GPU Side Channel Attacks

e Attack 1: Application Fingerprinting.

conducts her application across multi-GPU system:s.
« 8 HPC applications + 10 DNN models.

* Spy: operates in the background, persistently tracking NVLink leakage
vectors.



NVLink Leakage Trace

* "nvlink_total data received".
 Total data bytes received through NVLinks.

“rf” from openMM benchmarks

Leaky counter readings

40‘00 6000
Profling samples

“ResNet-50"

Leaky counter readings

AOIOO 6000
Profling samples
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Cross-GPU Side Channel Attacks

e Attack 1: Application Fingerprinting.

* Evaluation among 18 applications.
* Features engineering.

e Classification.

DGX GCP
F1 Prec Rec F1 Prec Rec
KNN 25.96 | 31.45 | 26.11 || 55.77 | 55.97 | 58.89
XGBoost | 90.87 | 91.45 | 91.11 || ©7.789) | 98.06 | 97.78
LightGBM | 02.22)| 93.12 | 92.22 || 96.10 | 96.93 | 96.11

21



Cross-GPU Side Channel Attacks

e Attack 2: Fingerprinting 3D graphics character rendering.

renders her 3D graphics character across multi-GPU systems.
e 50 fully rigged 3D characters from the Blender Studio open movies.

* Spy: operates in the background, persistently tracking NVLink leakage
vectors.



NVLink Leakage Trace

* "nvlink_total data received".
 Total data bytes received through NVLinks.

nvlink total data received (bytes)

00000

6000
Time (ms)

“NVLink leakage traces of 5 consecutive frames”
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NVLink Leakage Trace

* "nvlink_total data received".
 Total data bytes received through NVLinks.

Character 1:
“Pinguino”

Character 2:
Ilot "Il

24



Cross-GPU Side Channel Attacks

e Attack 2: Fingerprinting 3D graphics character rendering.

 Evaluation among 50 characters.

* Features engineering.
* Classification.

F1 Prec | Rec
KNN 59.74 | 62.71 | 62.50
XGBoost | 90.11 | 93.10 | 90.50
LightGBM | (91.56) | 94.11 | 92.00

25



Outline

* Background: Multi-GPU interconnect.

* Threat model and leakage vectors.
* Cross-GPU covert channel attacks.
* Cross-GPU side channel attacks.

 Mitigation.
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Mitigation

* Restricting access to high-resolution clock instructions.
» Detecting abnormal NVLink monitoring and/or contention.
* Managing access to leaky counters.
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Conclusion

 Covert and Side-channels on multi-GPU interconnect.

* Through contention and leaky counters (First).
* Cross-GPU covert channel attack.
* Two end-to-end cross-GPU side channel attacks.
* Mitigation based on limiting the precision or rate is not effective.

 Future work:

* Finer-grained side channel attack; better profiling systems for interconnect.
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