

That Doesn't Go There: Attacks on Shared State in Multi-User Augmented Reality Applications

Carter Slocum^{1*}, Yicheng Zhang^{1*}, Erfan Shayegani¹, <u>Pedram Zaree¹</u>,

Nael Abu-Ghazaleh¹, Jiasi Chen²

yzhan846@ucr.edu

¹University of California, Riverside ²University of Michigan

*Equal contribution

Multi-user augmented reality apps

• A growing number of AR applications facilitate multi-user interactions with shared holograms

• These applications are supported by major industry players

What new security risks arise for multi-user AR?

• AR devices sense the real world to create a shared AR experience

Outline

- Background: "Shared State" in Augmented Reality.
- Threat Model.
- Three Scenarios of Attacks.
- Mitigation.

GPS Swap

Background on multi-user AR

• AR devices read/write to a shared state in order to view holograms

What if an attacker poisons the shared state?

Source: https://developers.google.com/ar/develop/cloud-anchors

What is "Shared State" in augmented reality?

- Shared State: A collective set of information necessary for enabling interactive and consistent experiences among multiple users.
- Shared State contains:
 - Visual feature map of real world (point cloud map).
 - Holograms.

How do clients communicate with the Shared State?

- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor

AR Shared State Taxonomy

- We examined commercial multi-user AR frameworks
- Propose the following taxonomy
 - Local: small local areas (e.g., indoor room)
 - Global: outdoor, world-scale (e.g., Pokemon Go)

AR Shared State Taxonomy

- Curated Shared State.
 - Curated maps are constructed by "curators".
 - Only curator can write in shared state.
 - But non-curator can read from shared state.

• All users are allowed to Read and Write in shared state.

	Non-curated	Curated	
	Scenario A: Cloud	Commercial scenario	
Local	Anchor	not found.	
	Keys: camera, IMU	Keys: camera, IMU	
	Attacks: read, write	Attacks: read	
Global	Scenario C: Mapillary	Scenario B: Geospatial	
		Anchor	
	Keys: camera, IMU, GPS	Keys: camera, IMU, GPS	
	Attacks: write	Attacks: read	

Example of curated AR Shared State: Augmented art gallery

Example of non-curated AR Shared State: Onthe-fly game 14

Threat model: Read attack

- An attacker participates in a multi-user AR application
 - Uses an <u>unmodified</u> AR application to access shared state
 - As a regular user, no special permissions
- Read attack:

Attacker extracts sensitive information stored within the shared state created by victim.

Threat model: Write attack

- Same threat model as Read attack
- Write attack:

Attacker manipulates shared state to deceive subsequent victim user!

Three Attack Scenarios

- Scenario A: Local, Non-Curated Shared State.
 - Platform: Google's Cloud Anchor API.
 - Attacker can read or write.
- Scenario B: Global, Curated Shared State.
 - Platform: Google's Geospatial API.
 - Attacker can only read.
- Scenario C: Global, Non-Curated Shared State .
 - Platform: Mapillary.
 - Attacker can read or write.

	Non-curated	Curated	
Local	Scenario A: Cloud	Commercial scenario	
	Anchor	not found.	
	Keys: camera, IMU	Keys: camera, IMU	
	Attacks: read, write	Attacks: read	
Global	Scenario C: Mapillary	Scenario B: Geospatial	
		Anchor	
	Keys: camera, IMU, GPS	Keys: camera, IMU, GPS	
	Attacks: write	Attacks: read	

Scenario A: Remote read attack

1. Attacker has control of own device 2. Show inputs to camera

View hologram at physical location

Scenario A: Remote write attack

1. Attacker has control of own device

2. Show inputs to camera

Write hologram at remote location

Scenario A: Evaluation

• Six different environments.

- Samsung Galaxy S20 Android phone with Google ARCore support.
- Good and robust success rate among three attacks.

Environmont	Attack success rate	
Environment	Static scene	Add clutter
Office desk	8/16	7/16
Bedroom desk	6/16	4/16
Bedroom bed	10/16	8/16
Outdoor garden	1/16	0/16
Outdoor BBQ	16/16	15/16
Outdoor pool	15/16	14/16

Remote Write Attack Success Rates

Effect of Distance on Remote Read Attack $_{\rm 23}$

Scenario B: Remote read attack

- Attacker reads a hologram from <u>a remote location</u>.
- Attacker deceives Google's Geospatial API
 - Fake camera: photograph of location
 - Fake GPS: GPS spoofing app

Write hologram at physical location

Scenario B: Evaluation

• 23 holograms at various locations within our campus.

- Samsung Galaxy S8 and the Samsung Galaxy S21 with Google Geospatial API support.
- Good and robust success rate through all locations.

Scenario C: Poisoned write

- Poisoned write to the <u>Shared State's point cloud map</u>
- Attacker deceives point cloud generation algorithms
 - Fake GPS: Swap GPS coordinates of two images sequences by editing image metadata
- Experiments done in a Mapillary sandbox with permission
 - No public users were affected

Attack 2 Preview: Example on Mapillary

No attack: Desired annotations

With attack: Annotations swapped

Dangerous scenario!

Mitigation Using Multi-Modal Sensors

- How to detect fake camera inputs?
- Idea: Use additional sensor modalities AR devices equipped with depth sensor, Lidar, etc. Ο
- How did we evaluate this defense?

CNN: ResNet-18 network to detect spoofed images

Dataset: 15 real scenes, 300 pairs of color and depth image of each scene Same process to collect images in front of monitor showing spoofed image **Training**: 12 scene for training; 3 scenes for test

Precision: 84.22%

- Other potential mitigations

 Clean-Slate System Design
 Real Space Security

 - Local Moderators

spoofed image

RGB camera of

Depth camera of spoofed image

Summary

AR devices sense information about a common reality

Attack opportunities!

- Multi-user application attacks on shared world state (First)
 - Read/write holograms despite not being physically present
 - Demonstrated on 3 commercial AR frameworks
- Easy mitigation strategies (e.g., multi-modal sensing) are effective
 - But require additional sensors and compute

Demo defense

Thank you! Questions?