arXiv:2509.00300v1 [cs.CR] 30 Aug 2025

ShadowScope: GPU Monitoring and Validation via
Composable Side Channel Signals

Ghadeer Almusaddar®
galmusal@binghamton.edu
Binghamton University
Binghamton, NY, USA

Barry Williams
bwilli33@binghamton.edu
Binghamton University
Binghamton, NY, USA

Yicheng Zhang®
yzhan846@ucr.edu
University of California, Riverside
Riverside, CA, USA

Yu David Liu
davidl@binghamton.edu
Binghamton University
Binghamton, NY, USA

Saber Ganjisaffar
sganj003@ucr.edu
University of California, Riverside
Riverside, CA, USA

Dmitry Ponomarev
dponomar@binghamton.edu
Binghamton University
Binghamton, NY, USA

Nael Abu-Ghazaleh
naelag@ucr.edu
University of California, Riverside
Riverside, CA, USA

Abstract

As modern systems increasingly rely on GPUs for compu-
tationally intensive tasks such as machine learning acceler-
ation, ensuring the integrity of GPU computation has be-
come critically important. Recent studies have shown that
GPU kernels are vulnerable to both traditional memory-
safety issues (e.g., buffer overflow attacks) and emerging
microarchitectural threats (e.g., Rowhammer attacks), many
of which manifest as anomalous execution behaviors observ-
able through side-channel signals. However, existing golden
model-based validation approaches that rely on such sig-
nals are fragile, highly sensitive to interference, and do not
scale well across GPU workloads with diverse scheduling
behaviors. To address these challenges, we propose Shadows-
cope, a monitoring and validation framework that leverages
a composable golden model. Instead of building a single mono-
lithic reference, ShadowScope decomposes trusted kernel ex-
ecution into modular, repeatable functions that encode key
behavioral features. This composable design captures execu-
tion patterns at finer granularity, enabling robust validation
that is resilient to noise, workload variation, and interfer-
ence across GPU workloads. To further reduce reliance on
noisy software-only monitoring, we introduce ShadowScope*,
a hardware-assisted validation mechanism that integrates
lightweight on-chip checks into the GPU pipeline. ShadowsS-
cope® achieves high validation accuracy with an average
runtime overhead of just 4.6%, while incurring minimal hard-
ware and design complexity. Together, these contributions
demonstrate that side-channel observability can be system-
atically repurposed into a practical defense for GPU kernel
integrity.

“Both authors contributed equally to this research.

1 Introduction

Graphics Processing Units (GPUs) are ubiquitous in mod-
ern computing systems, powering everything from mobile
devices to large-scale data centers [1, 3]. They accelerate
data-intensive and compute-heavy workloads, ranging from
multimedia applications to large language models (LLMs)
such as ChatGPT [53] and LLaMA [35]. To support these
demands, GPUs adopt a highly parallel execution model
that launches massive numbers of threads [1, 7, 46]. Given
the sensitive nature of many GPU workloads, ensuring the
integrity of kernel execution has become increasingly crit-
ical. However, recent studies have shown that GPU kernel
execution is vulnerable to both traditional memory-safety
issues [11, 13, 15, 36, 55, 59, 71] and emerging microarchi-
tectural attacks [14, 31, 39, 40, 43, 72, 73]. To protect GPU
kernels, researchers have proposed a range of defenses, in-
cluding both software- and hardware-based approaches [20,
21, 27, 64]. However, these solutions often suffer from high
performance overhead and are limited in scope, addressing
only a subset of attacks.

As an alternative, researchers have explored golden model-
based validation, which compares a kernel’s runtime behav-
ior against a trusted reference derived from known good
executions. Prior work has repurposed side channel signals,
including performance counters and timing characteristics,
and, in controlled laboratory settings, power or EM signals,
to build such references [8, 32, 44, 58, 62]. These signals ex-
pose execution structure without intrusive software changes.
Traditional golden model-based validation has so far been
evaluated primarily on simple CPUs or small embedded sys-
tems in controlled environments, and for programs with
invariant execution patterns. Translating these methods to
GPUs is nontrivial. SIMT execution variability, the presence

https://arxiv.org/abs/2509.00300v1

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

of many SMs, dynamic scheduling, and other sources of ex-
ecution variability introduce distorts to traces, making it
difficult to capture a single golden model.

Research challenges. Leveraging side-channel signals for
kernel validation on GPUs introduces several challenges due
to the complexity of GPU hardware. (1) Side-channel sig-
nals are fragile and noisy, and interference from concurrent
processes can overwhelm the useful signal. Prior studies
on small devices even report SNR values below 0.001 for
power and EM measurements [28, 34], and GPU parallelism
further complicates matters by overlapping thousands of
threads and mixing their behaviors. This makes signal ex-
traction on GPUs especially challenging. (2) Aligning ob-
servations with specific kernel executions is unreliable. Re-
source contention, kernel scheduling, and driver-level opti-
mizations can shift or stretch execution phases, leading to
misaligned traces [66, 68]. Such misalignment inflates false
positives in golden model validation. (3) Execution patterns
vary naturally. Differences across inputs and configurations
can change memory access patterns or warp scheduling,
which undermines the assumption of stable reference traces.
This variability makes it hard to define accurate golden mod-
els that generalize across real workloads.

Our approach. To overcome these challenges, we propose
ShadowScope, a GPU monitoring and validation framework
based on composable golden reference models. In this
design, the full GPU program execution is represented as a
sequence of modular segments (e.g., segmented along kernel
invocations, CPU-GPU memory transfers, or intra-kernel
phases). Each segment is validated independently rather than
as part of a single monolithic trace. This segmentation re-
duces the impact of scheduling noise and input variability,
making golden models more robust in highly parallel GPU
environments. It also allows for each segment to be config-
ured to allow for some variability in execution. ShadowScope
builds on two key innovations. (1) Compositional valida-
tion. The golden reference is decomposed into segments
defined by composable functions marking kernel boundaries
or phases. Each segment captures a repeatable execution pat-
tern and is validated independently, isolating variability and
absorbing scheduling noise. An application is deemed valid
only if all segments conform to their expected behavior. (2)
Auxiliary instrumentation. The application is instrumented
to emit lightweight markers as side-channel signals (more ac-
curately, covert channel signals). These markers indicate seg-
ment boundaries and can encode contextual parameters such
as kernel and/or input configurations. When these markers
are received by a verifier, they enable it to align the observed
traces to improve robustness under concurrency with min-
imal overhead. Communicating configuration information
as part of the marker can also allow the verifier to dynami-
cally match the appropriate reference golden model to the
communicated kernel configuration parameters. We call this
idea composable golden reference models.

We first implemented ShadowScope in software and evalu-
ated it on two NVIDIA GPUs: Tesla V100 and GeForce RTX
4060. Using the NVIDIA CUPTI profiler API [47], we col-
lect performance data such as timing, instruction counts,
and memory usage during kernel execution to construct the
golden reference model. We decomposed execution into seg-
ments corresponding to kernel invocations and inserted func-
tions that communicate markers through the side channels
at the kernel boundaries. To assess effectiveness, we tested
ShadowScope against four representative GPU attacks: buffer
overflows [15, 36], the mind-control attack [55], Rowham-
mer [38], and slowdown/DoS attacks [43, 63]. Across these
cases, ShadowScope successfully detected anomalous execu-
tion with high accuracy, achieving up to a 100% true positive
rate and as low as 0% false positives under controlled con-
ditions. Moreover, our evaluation shows that the method is
robust to noise and interference from other GPU workloads.

When implementing ShadowScope in software on NVIDIA
GPUs, we identified several limitations in the existing Perfor-
mance Monitoring Units (PMUs) that hinder effective attack
detection. These include (1) low sampling rates, which reduce
visibility into short-lived kernel behavior, (2) high profiling
overhead and restrictions on event groupings imposed by
current GPU profiling tools, and (3) Side channels from acces-
sible performance counters: enabling access to performance
counters is known to enable side-channel leakage [40]: for
this reason, software access to performance counters is of-
ten disabled on GPUs. To address these gaps, we introduce
ShadowScope*, a lightweight hardware-assisted mechanism
for performance monitoring and on-chip kernel validation.
ShadowScope* supports higher sampling rates and isolated
profiling events, while eliminating the need for CPU and
driver intervention required in software-based validation.
These enhancements enable ShadowScope* to effectively de-
tect two primary classes of GPU attacks: kernel deviation
and mind-control attacks (Section 5.4.1). We show that the
performance and hardware complexity of ShadowScope* are
small, making it a practical and efficient solution for securing
GPU application execution (Sections 5.4.2 and 5.4.3).

In summary, the paper makes the following contributions:

e We present the first defense framework that leverages
GPU side-channel signals to validate execution.

e We propose a composable golden modeling approach
that enables robust validation by segmenting execu-
tion into independently verifiable units. These units of
execution is demarcated via markers that enables the
verifier to synchronize with the execution to tolerate
variability in GPU parallel execution. The markers are
communicated through the side-channel.

e We implement ShadowScope in software and show on
NVIDIA GPUs that it can detect the presence of four
representative attacks with high accuracy.

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

o To improve monitoring quality and lower its overhead,
we design a hardware implementation that extends
the PMU to implement the monitoring. We show that
ShadowScope® is able to validate correct execution and
identify two major classes of attacks.

2 Background

In this section, we first review the GPU execution model and
then introduce the emerging control flow attacks on the GPU.
After that, we describe the GPU Performance Monitoring
Units (PMUs) that are accessible to developers and form the
fundamental structure of ShadowScope.

2.1 GPU Execution Security

Unlike CPU processes, GPU kernels operate using the single
instruction, multiple threads (SIMT) model, which enables
the execution of thousands of threads in parallel. This im-
proves computation efficiency for workloads such as 3D
graphics rendering and deep learning. In this work, we focus
specifically on NVIDIA GPUs.

GPU execution. The execution flow within the GPU begins
with the CPU launching a kernel on the GPU, specifying
the grid and block dimensions. A grid, consisting of multi-
ple blocks, is divided into groups of threads. These blocks
are then distributed across the streaming multiprocessors
(SMs).Within each block, threads are organized into warps
(32 threads) that execute the same instruction simultane-
ously. The warp scheduler in each SM selects which warps
to execute, ensuring efficient parallel processing.

GPU kernel execution integrity. Ensuring GPU kernel
execution integrity is vital for maintaining the correctness
and security of GPU computations. This involves preserving
the integrity of both the kernel code and the execution flow.
It guarantees that the GPU performs intended operations
without malicious interference.

Emerging attacks on GPU kernels. Recent memory cor-
ruption attacks, such as buffer overflow attacks, have been
extensively demonstrated on GPUs [11, 36, 55]. These attacks
target the crucial part of the GPU execution unit - the kernel.
For instance, Miele et al. [36] and Di et al. [13] demonstrated
heap and stack-based buffer overflow attacks on GPU kernels
to corrupt data and manipulate the execution flow. Park et
al. [55] corrupted GPU kernel executions in machine learn-
ing models, significantly reducing the accuracy of model
predictions.

2.2 PMU on GPUs

GPU vendors like NVIDIA and AMD have introduced per-
formance monitoring units similar to those on CPUs to help
developers optimize application performance. On NVIDIA

GPUgs, these performance counters are accessed through the
CUDA Profiling Tools Interface (CUPTI) [47]. On AMD GPUs,

these counters can be analyzed via the GPU Performance
API (GPUPerfAPI) [5].

PMU events and metrics. NVIDIA GPUs provide two kinds
of counters to track the performance of CUDA applications:
events and metrics. An event in CUDA CUPTI is a measur-
able activity that occurs during the execution of a CUDA
application [50]. These events gather detailed performance
metrics, helping to understand and optimize CUDA appli-
cation performance. Events and metrics relate to various
aspects of GPU architecture resources, including SM, L1/L2
cache, dynamic random access memory (DRAM), GPU inter-
connects (e.g., NVLink and PCle), and so on. Different events
and metrics have varying sampling rates, and some can be
profiled together while others cannot.

3 System Overview

In this section, we first describe our threat model and then
elaborate on the design of our approach, utilizing side chan-
nel signals in GPUs to validate untested kernels.

3.1 Threat Model and Design Goals

We consider a victim and attacker who can launch kernels to
run on GPUs. Victim kernels can be part of common appli-
cations that can be accelerated on GPUs, such as ML model
training and inference [15, 18, 56] or HPC benchmarks [9, 12].
The attacker is an unprivileged remote user who can exploit
a memory corruption vulnerability to change kernel con-
trol flow (e.g., buffer overflow) within the GPU kernels used
by the victim application [11, 13, 15, 36]. The attacker may
also attempt microarchitectural attacks such as side channel
attacks [40, 43], rowhammer attacks [69], DoS attacks [70],
which originate outside a victim application but try to com-
promise it by affecting its execution behavior.

Attacker’s capabilities. We assume the attacker operates
entirely within the GPU. The attacker can exploit existing
memory vulnerabilities to alter the intended execution be-
havior of the victim’s GPU kernels. The attacker does not
need to tamper with the program executing on the host CPU.
Instead, the attacker can launch malicious kernels on the
GPU that run concurrently with the victim’s kernels and
attempt microarchitectural attacks to compromise them. We
assume that the GPU’s performance monitoring unit (PMU)
is trusted and that all commands and data related to the PMU
are protected from tampering. In other words, the attacker
cannot modify the data collection process or the collected
side-channel data, regardless of how many kernels they are
able to launch. We monitor the periodic execution of victim
kernels using the CUPTI Event APIL Notably, CUPTI can only
profile kernels that execute within the same context as the
profiler [48].

Design goals. The goal of the validator of ShadowScope is to
validate the execution behavior of victim GPU kernels that
are vulnerable to existing GPU control flow attacks [11, 15,

1
2
3
4
5
6

8

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

36, 55, 59]. We collect side-channel leakages emitted during
the execution of untested kernels and compare them against
pre-generated golden reference traces. By analyzing devi-
ations between the collected and golden traces, we check
whether the execution behavior of the untested kernel has
deviated from its execution path.

3.2 Overview of ShadowScope

Fig. 1 overviews the idea of composable golden models, the
validation component of ShadowScope which involves four
key components: untested kernels instrumented with com-
posable functions f, a side-channel data collector through
PMU, a set of pre-generated golden reference traces of ker-
nels, and a validator.

We use composable functions to enhance the communica-
tion of side-channel information to the validator, supporting
more effective golden model validation. This information
helps target security-critical kernels more precisely and im-
proves detection accuracy. In addition, it reduces the size of
the golden model by focusing only on relevant execution
segments. Composable functions can also convey important
input parameters, which guide the selection of the appropri-
ate golden model for a given execution context.

The workflow begins when an untested CUDA kernel is ex-
ecuted on the GPU. During execution c, the kernel, instru-
mented with composable functions, generates side-channel
footprints that are captured for validation. The composable
function f is used to mark the start and end boundaries of the
untested kernel. Next, the validator’s data collector captures
the resulting side-channel signals from the PMU, including
the footprints generated by the kernel instrumented with the
composable function e Based on the metadata associated
with the execution, the validator then selects the correspond-
ing golden reference trace from a pre-collected dataset e
Finally, statistical comparison algorithms are applied to com-
pare the collected trace with the corresponding golden trace
and determine whether the kernel’s execution integrity has
been compromised e If the execution fails validation, it is
flagged as anomalous and prevented from continuing on the
GPU.

__global__ composable_function() {
int old_val, new_val;
old_val = atomicCounter;
new_val = old_val + 1;
__syncthreads ();

atomicCAS (&atomicCounter, old_val, new_val);
__syncthreads(); }

void function() {
int blocks(256,1,1), threads(32,1,1);

// blocks and threads to execute composable_function
int compsBlocks(40,1,1), compsThreads(4,1,1);

// composable function integration
composable_function<<<cBlocks, cThreads>>>();
kernel_to_be_validated<<<blocks, threads>>>(argl,
// composable function integration
composable_function<<<cBlocks,b cThreads>>>(); }

arg2);

Listing 1. Composable function design.

/ N
GPU
oUntested kernel execution with composable function f
Time Time :
Side channel data collector o
| ° Validator: comparison and validation ‘
- %

Figure 1. Overview of ShadowScope framework.

3.3 Instrumenting GPU Kernels with Composable
Functions

Why insert composable functions? We insert composable
functions f at the beginning and end of each GPU kernel to
enhance the robustness of our golden model validation. This
design choice is motivated by several reasons: First, these
functions help the validator better align untested traces with
their corresponding golden traces. Second, given that GPUs
execute hundreds of kernels, precisely identifying the start
and end of each kernel enables us to localize potential attacks
more effectively. Furthermore, the composable functions fa-
cilitate the transmission of important kernel metadata—such
as input size, block size, and grid size—through a covert chan-
nel, allowing the validator to select the appropriate golden
reference trace for comparison. Finally, these functions must
remain lightweight to avoid significantly altering the ker-
nel’s primary side-channel leakage characteristics.

Design of composable functions on NVIDIA GPUs. We
base these composable functions on atomic operations be-
cause they are rarely used in common GPU benchmark ker-
nels and reliably trigger correlated side-channel readings. To
identify these functions better, we execute them with a pre-
specified number of threads and thread blocks. Composable
function design can be adjusted based on the targeted kernel
to be distinguishable from kernel execution. For example,
we utilize the PMU event global_atom_cas, which counts
the number of global atomic Compare-And-Swap operations
performed on GPU memory [50]. This approach enables
accurate tracking and monitoring of each kernel’s execu-
tion boundaries. We explain the integration of composable
functions in targeted trusted software in Listing 1.

Splitting side-channel traces based on composable func-
tions. In addition to events used to validate the kernel, we
collect events to detect composable functions. This set of
events represents the execution behavior of trusted kernels.
For instance, we collect one event group consisting of four

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

events: instruction_executed, global_store,global_load,

and global_atomic_cas. The first event correlates with the
SM level, representing the number of executed instructions in
each SM. The global_load and global_store events iden-
tify the amount of data read from the GPU’s global memory
by CUDA threads during kernel execution. The last event
tracks the number of times an atomic Compare-And-Swap
(CAS) operation is executed in global memory. This atomic
event helps identify the region of interest based on compos-
able functions within each kernel.

As shown in Figure 2, the readings of global_atom_cas
help identify the start and end of each layer or kernel execu-
tion in AlexNet. For simplicity, we only display the instruc-
tion_executed readings, which represent the total number
of instructions executed across all SMs per sample.

1

Side channel readings

|
10 | inst_executed
global_atomic_cas

o 500 1000 1500 2000 2500 3000 3500
Sample

Figure 2. Splitting side-channel traces (AlexNet) based on
global_atom_cas readings. Each split segment represents
a single kernel/layer.

3.4 Side-channel Data Collector

Design of data collector on NVIDIA GPUs. We use the
CUPTI API to collect data from performance counters in
NVIDIA GPUs. Figure 3 explains the data collection ap-
proach using the CUPTI APIL Both the targeted kernel and
CUPTI profiler need to be in the same context to count the
PMU data of the targeted kernel. To count PMU events using
the CUPTI profiler, we set data collection mode to contin-
uous using cuptiSetEventCollectionMode. A set
of counters needs to be enabled and set to count specific
events via cuptiEventGroupCreate, cuptiEvent-
GroupSetAttribute,and cupt iEventGroupEnable.
Then, all these events should be added to the same events
group for event counts to be read together using cup-
tiEventGroupAddEvent. An event group is a collection
of events that can be counted together. Not all supported
events by NVIDIA GPU can be added to the same events
group based on their type [48].

The profiler is set based on the targeted event group
and data collection mode. During the execution of the tar-
geted kernel, a CPU thread is used to read events counts per
each sample from GPU for collection using cupt iEvent—
GroupReadAllEvents. It is important to note that the

sampling rate is affected by the type of the event being col-
lected as we will show later.

I:I GPU Kernel
[cupmi AP

GPU |

I |
Kernel Context S/
S
Initiation and Setup / j’%&é\é \% \% \% /
CPU ProcesskF======~ ! St (R SLLL SR

3 \3 3 \3

° = = \=

Create Thread © \® © \®

Setup and Enable Disable and Destroy
Events Group using Events Group
CUPTI API

Event Group

Setup GPU Kernel Execution

CPU Thread
CUPTI API

Figure 3. PMU data collection process using CUPTI API.

3.5 Golden Reference Model of GPU Kernels

The golden model is a conventional verification technique
widely used throughout hardware development life cycles [16,
22, 37]. It verifies whether an IC design satisfies the required
specifications. If the design fails to meet these specifications,
it must be revised and re-verified until it passes all verifi-
cation tests. In this work, we investigate whether golden
model verification can be extended to GPU execution flows.
Unlike traditional hardware systems, GPUs exhibit funda-
mentally different architectures and highly parallel execu-
tion patterns. To address these differences, we propose a
novel golden model specifically tailored for GPU execution,
focusing on the kernel, the smallest execution unit on a GPU.

The golden reference model is generated during the secure
execution of all trusted kernels and serves as the baseline
for validation. Importantly, these golden models only need
to be constructed once based on trusted execution behavior.

3.6 Untested Kernel Validation

When collecting the execution behavior of an untested ker-
nel using the side-channel data collector based on PMU, the
resulting traces are compared against their corresponding
golden model. With the help of composable functions em-
bedded within the kernels, we can accurately determine the
start and end of each kernel execution. This enables us to
extract side-channel readings that precisely correspond to
the regions of interest.

We use cross-correlation as the similarity metric to as-
sess whether the kernel execution flow deviates from the
expected behavior. This validation method has been success-
fully applied in prior work [62]. We choose cross-correlation
for two main reasons: (1) it enables pattern matching even
when traces are delayed or temporally misaligned, a com-
mon occurrence during side-channel data collection via the
CUPTI AP, because it inherently searches for the optimal
lag alignment; and (2) it allows comparisons between traces
of unequal lengths, which is critical in GPU environments
where concurrent workloads can introduce timing variations
and affect the sampling rate.

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

A signal segment is considered matched if the correlation
coefficient exceeds 0.8. To detect attacks, we apply a rejec-
tion threshold based on consecutive mismatches. Specifically,
ShadowScope flags a kernel as compromised only when four
or more rejections occur in succession, allowing it to tolerate
up to three consecutive rejections without raising a false
alarm.

4 Software Instantiation of ShadowScope on
NVIDIA GPUs

In this section, we first present the software implementation
of ShadowScope on NVIDIA GPUs, including side-channel
data collection, PMU event selection, and composable golden
model generation. We then evaluate its security by imple-
menting four GPU kernel attacks and show that ShadowScope
successfully detects all attacks and identifies the compro-
mised kernels.

4.1 Events Selection and Grouping

Unlike CPU workloads, GPU kernel execution involves mul-
tiple Streaming Multiprocessors (SMs), and different sched-
uling approaches. Some performance events are collected
at the level of individual SMs, others capture the aggregate
behavior of shared resources across several SMs. Another
challenge with the NVIDIA GPU PMU, particularly when
using the CUPTI AP, is that not all hardware events can be
grouped together [47, 50]. Based on our findings, events that
are collected over the same number of instances (such as
per SM or per group of SMs) can be grouped and collected
together. For instance, on a Tesla V100 GPU with 80 SMs, the
event inst_executed yields 80 readings, one per SM. In
contrast, the event fb_subp0_read_sectors produces
only 16 readings per sample, as each reading represents a
group of 5 SMs. The NVIDIA Volta microarchitecture sup-
ports profiling 82 events. We categorize these events in Ta-
ble 1.

Targeted GPU kernels. To evaluate our golden model ap-
proach ShadowScope, we targeted benchmarks from differ-
ent suites. These benchmarks are written in the CUDA pro-
gramming language. We categorize 18 benchmarks from Ro-
dinia [9], CUDA-SDK [51], GraphBig [41] and four famous
DNN models, summarized in Table 2.

4.2 Targeted Attacks

In this work, we evaluate ShadowScope against four types
of attacks targeting GPU kernel execution and demonstrate
its effectiveness in identifying abnormal or modified ker-
nel execution flows. These attacks fall into the following
categories.

Attack 1: buffer overflow attack. Buffer overflow attacks
occur when an attacker overwrites the call stack’s return
address, redirecting the original program execution to mali-
cious code. This type of attack was first introduced in prior

work [15, 36]. It involves several steps. (1) The attacker
exploits stack-based buffer overflow vulnerabilities in the
CUDA kernel by providing input that exceeds the size of a
fixed buffer, causing it to overwrite adjacent memory on the
stack, such as function pointers. (2) The attacker crafts the
input to overwrite these pointers with addresses of malicious
code. (3) The payload is triggered by invoking the vulnerable
kernel function. As a result, when the kernel executes, it
uses the overwritten function pointers, which now point to
the attacker’s code. This causes the malicious payload to run
instead of the intended function, allowing the attacker to
take control of the CUDA application’s execution flow.
Attack 2: Mind control attack. The mind control attacks [55]
involve exploiting GPU memory vulnerabilities to under-
mine deep learning model performance. The attack process
includes several key steps. (1) Setup: Attackers gain arbi-
trary code execution on the GPU by exploiting memory
vulnerabilities in GPU kernels. This often involves hijacking
the control flow of the GPU kernel using techniques like
buffer overflow to overwrite function pointers. (2) Skipping
GPU kernel execution: Attackers overwrite the identified
GPU kernels, effectively converting them into no-ops. This
manipulation degrades the deep learning model’s accuracy,
causing predictions to become no different from random
guessing.

Attack 3: Rowhammer attack. Rowhammer is a hardware-
level attack that rapidly accesses DRAM rows to induce bit
flips in adjacent rows [38]. These bit flips can corrupt data or
be exploited to bypass security mechanisms. Prior work [31,
69] has shown that such flips in DNN model weights can
significantly degrade model performance. In this work, we
aim to protect GPU memory against Rowhammer attacks.
We launch such attacks on the GPU in two main steps: (1)
evicting the L2 cache using the discard instruction [49]
(available only on NVIDIA’s Ampere and Ada architectures),
and (2) repeatedly accessing the same DRAM bank on the
GPU thousands of times to trigger potential bit flips.
Attack 4: DoS/Slow-down attack. Modern DRAM chips
(e.g., DDR5 and GDDRS5) have introduced a Refresh Manage-
ment (RFM) interface to help mitigate Rowhammer attacks.
However, recent work [42, 43, 63] has shown that RFM fea-
tures can be exploited by attackers to intentionally trigger
refresh activity and block DRAM banks, thereby slowing
down co-located applications. These attacks are both effec-
tive, causing up to a 4.8x slowdown, and stealthy, as the
attacker can activate only a single address in different RFM
sub-banks to evade detection. Similar to traditional Rowham-
mer attacks, we simulate this attack on the GPU in two main
steps: (1) flushing the L2 cache, and (2) randomly accessing
DRAM addresses in RFM sub-banks to trigger slowdowns in
victim applications.

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

Table 1. CUPTI Events in NVIDIA Volta.

H Category [CUPTI Events H
SM active/elapsed_cycles_pm/sys/warps/sm, inst_executed/issued1/issued0, thread_inst_executed,
sm_cta/warps_launched
Memory fb_subp0/subp1_read/write_sectors
FP Unit inst_executed_fma/fp16_pipe_s0/s1/s2/s3
L2 Cache 12_subp0/subp1_read/write/total_sector_misses/queries, 12_subp0/subp1_write_sysmem_sector_queries
Tensor Cores tensor_pipe_active_cycles_s0/s1/s2/s3
Trigger Unit prof_trigger 00/01/02/03/04/05/06/07
Atomic Ops atom_count, global_atom_cas, shared_atom, shared_atom_cas
Global Memory | global load/store
Local Memory local_load/store
Shared Memory shared_load/store, shared_ld/st_bank_conflict, shared_ld/st_transactions
Texture 12_subp0/subp1_read/write_tex_hit_sectors, 12_subp0/subp1_read/write_tex_sector_queries
PCle pcie_rx/tx_active_pulse
misc generic_load/store

Table 2. Evaluated benchmarks.

H Suite ‘ Benchmarks H

Rodinia gaussian, heartwall, huffman, lud,
myocyte, particlefilter, srad

CUDA SDK matrixMul, vectorAdd, convolution-
Seperable, histogram, sortingNet-
works, fp16ScalarProduct

GraphBig BetweennessCentr

DNN Models | CifarNet, AlexNet, SqueezeNet,
ResNet-50

4.3 Evaluation Results

Experiment setup and data collection. We conduct At-
tacks 1 and 2 on an NVIDIA Tesla V100 GPU with driver
version 535.183.01 and CUDA version 12.2. Attacks 3 and
4 are performed on a GeForce RTX 4060 with Samsung
GDDR6 memory, using driver version 545.29.06 and CUDA
version 12.3. To evaluate our defense method, we collect
three datasets for each benchmark: golden, normal, and at-
tack. Each dataset contains 100 traces. The golden and nor-
mal datasets are collected under benign conditions using only
GPU benchmarks. In contrast, the attack dataset is recorded
during active attack execution. We use the golden dataset
to extract reference traces. Then, we evaluate detection per-
formance using the normal and attack datasets. The golden
model comparison algorithm is implemented in Python. True
Positive Rate (TPR) and False Positive Rate (FPR) are used as
evaluation metrics.

4.3.1 Evaluation of Buffer Overflow Attack (Attack 1).
In this attack, the adversary exploits a buffer overrun to over-
write function pointers and redirect execution flow. Each
call to a targeted function can be hijacked to invoke attacker-
controlled code. To monitor the attack, we utilize four CUPTI

eventsper SM: global_load,global_store,inst_e-
xecuted, and global_atom_cas. Since the Tesla V100
has 80 SMs, each reading yields 320 samples. We use glo-
bal_atom_cas as a marker to identify the start and end
of each kernel.

Figure 4 presents the performance of ShadowScope in iden-
tifying buffer overflow attacks across selected benchmarks
from the CUDA SDK and GraphBig suites. As shown, Shad-
owScope consistently achieves high TPR, with 3 out of 7
benchmarks reaching 100%, and the lowest still maintain-
ing a strong 87% (sortingNetworks). The False Positive Rate
(FPR) remains low overall, with 4 benchmarks recording 0%,
and the highest FPR observed being 25% for sortingNetworks.
The average TPR and FPR are 96% and 9%, respectively. The
relatively high FPR observed in some benchmarks is caused
by the limited sampling rate of the GPU’s PMU. In some fast-
executing kernels, such as those from sortingNetworks or
convolutionSeparable, the PMU collects fewer than 20 read-
ings per kernel. This low resolution makes it difficult to
compare traces against the golden reference accurately. As
a result, false positives increase. In Section 5, we propose a
new GPU PMU design to address this limitation.

Em TPR 3 FPR

Figure 4. Performance of ShadowScope in monitoring buffer
overflow attacks.

4.3.2 Evaluation of Mind Control Attack (Attack 2).
In this attack, critical DNN layers or GPU kernels are either

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

skipped or replaced with no-op operations. To detect such
behavior, we use the same four CUPTI events described in
Section 4.3.1 to monitor GPU kernel executions.

Figures 5 and 6 compare the CUPTI event traces of normal
and attack executions for CifarNet. In the normal trace (Fig-
ure 5), eight distinct kernel executions are observed. Each
is clearly separated by spikes in the global_atom_cas
event and exhibits consistent inst_executed activity. In
contrast, the attack trace in Figure 6 deviates from this pat-
tern. Although the global_ atom_cas event still marks
the kernel boundaries, the second kernel is missing. This
layer-skipping attack shifts the execution sequence and in-
troduces irregular fluctuations in inst_executed values
as well. ShadowScope detects such anomalies by capturing
these structural and behavioral inconsistencies.

Wwwﬂ

qst 2nd 3rd 4th 5th
kernel; kernel kernel kernel kernel

5
:

N
5

7th gth
kernelikernel: kernel

N
o

=
5

CUPTI event readings

Iy
o

—— inst_executed
———— global_atom_cas

s
5

o
=}

0 200 400 600 800 1000
Sample

Figure 5. Side-channel signal of normal CifarNet execution.

35 %M —— inst_executed
7. NP RN b AR | | A S A S global_atom_cas
-83-0 W/\,,/l i

B 25 |

L H

220 ;

s qst 3rd 4th 5th 6th 7th i gth
315 :
2 . kernel ‘kernel kernel (kernel kernel | kernel: kernel

o 1

0.0
0 200 400 600 800
Sample

Figure 6. Side-channel signal of CifarNet under attack. The
second kernel is skipped.

Figure 7 shows the detection performance of Shadows-
cope across four representative DNN architectures: CifarNet,
AlexNet, SqueezeNet, and ResNet-50. ShadowScope achieves
perfect detection (100% TPR) on both AlexNet and SqueezeNet,
with zero or near-zero false positives (less than 1%). Detec-
tion on CifarNet and ResNet remains strong, reaching 92%
and 89% TPR, respectively. However, both exhibit slightly
higher FPRs of 4%. Overall, the system delivers consistent
results, with an average TPR of 95% and an average FPR of
only 2%.

I TPR [FPR

100%

89%

Rate (%)

Figure 7. Performance of ShadowScope in monitoring mind
control attacks.

B TPR FPR

99% 100%

Rate (%)

._.
N B OO ©® O
o O O ©o o

N
& sz} &
P
& &
S N4 N

&
& é*o R

Figure 8. Performance of ShadowScope in monitoring
rowhammer attacks.

4.3.3 Evaluation of Rowhammer Attack (Attack 3). In
this attack, we demonstrate how ShadowScope can detect
abnormal memory behavior, such as Rowhammer attacks,
within the GPU’s GDDR memory. To monitor memory activ-
ity, we use four CUPTI events: fb_subp0_read_sectors,
fb_subpl_read_sectors, 12_subp0O_total_read_se-

ctor_queries,and 12_subpO_total_write_sector_qu-

eries. These events help track GPU memory usage patterns
at both the DRAM and L2 cache levels. Rowhammer attacks
rely on frequent row access and L2 cache flushing. As a
result, they produce distinct memory access patterns that
ShadowScope can effectively capture.

Figure 8 shows the detection performance of ShadowScope
across seven benchmarks from the Rodinia suite. ShadowS-
cope achieves perfect detection (100% TPR) on six out of
seven benchmarks, with lud slightly lower at 99% TPR. Most
workloads exhibit low false positive rates, ranging from 1%
to 4%, except for huffman, which records a higher FPR of
12%. We observe that when the sampling rate falls below
50 samples per kernel, detection accuracy decreases, which
leads to more false positives in huffman. Overall, ShadowS-
cope demonstrates strong and consistent performance across
diverse workloads, achieving an average TPR of 100% and
an average FPR of only 4%.

4.3.4 Evaluation of DoS/Slow-down Attack (Attack
4). In this attack, we use the same four memory-related
CUPTI events described in Section 4.3.3 to detect abnormal
GDDR memory usage by the adversary. These events help

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

E TPR 3 FPR

100% 100% 100%

Rate (%)

Figure 9. Performance of ShadowScope in monitoring
DoS/Slow-down attacks.

monitor low-level memory access behavior. Recent denial-of-
service (DoS) or slowdown attacks [43, 63] on DDR memory
exploit spoofed RFM to block access to DRAM banks. This
behavior can severely degrade the performance of co-located
applications. To succeed, the attack must both flush the L2
cache and randomly access DRAM addresses within RFM
sub-banks.

Figure 9 presents the results of ShadowScope on seven
benchmarks from the Rodinia suite. ShadowScope achieves
perfect detection (100% TPR) across all benchmarks, high-
lighting its strong sensitivity to attack behavior. Most bench-
marks show low FPRs, typically between 1% and 5%. How-
ever, huffman exhibits a higher FPR of 12%. Even so, the
system delivers excellent overall performance, achieving an
average TPR of 100% and an average FPR of just 4%.

4.4 Robustness to Noise

Since GPUs are designed for high parallelism and can run
multiple programs concurrently, we evaluate how Shadows-
cope performs under kernel interference. To assess the impact
of noise, we first collect 20 traces with only AlexNet running
on the GPU. We then introduce two noise scenarios sepa-
rately: concurrent execution of additional AlexNet models
(self-noise), and concurrent execution of other benchmarks
such as VecAdd (external noise). For each condition, we col-
lect another 20 traces. We use a normalized DTW similarity
score [61], where values closer to 1 indicate higher similarity,
to compare noisy traces against the baseline.

Figure 10 shows the effect of concurrent kernel execution
on normalized DTW similarity as measured by ShadowScope.
We compare two scenarios: (1) AlexNet as self-noise, where
the same model runs alongside itself, and (2) VecAdd as exter-
nal noise, where a lightweight benchmark runs concurrently
with AlexNet. In the baseline setting without concurrent
kernels, the similarity score averages 0.9820. As the number
of concurrent AlexNet kernels increases from one to three,
similarity gradually declines. The drop is more pronounced
in the VecAdd scenario, where the score falls to 0.8970. Al-
though this value still indicates strong similarity, it may lead
to a higher false positive rate. In comparison, the score under
self-noise remains higher at 0.9530.

B AlexNet (self-noise)
0 VecAdd (Additional noise)

Normalized DTW Similarity

2 Concurrent 3 Concurrent

1 Concurrent
Number of concurrent kernels

Baseline (0)

Figure 10. Impact of concurrent kernel noise (ShadowScope).

4.5 Limitation of Existing PMU

Even though ShadowScope performs well in most GPU bench-
mark scenarios, it depends heavily on NVIDIA’s existing
GPU Performance Monitoring Unit (PMU). However, the
current PMU design presents several limitations that may
hinder accurate kernel validation and anomaly detection. In
this section, we summarize the key limitations of the existing
GPU PMU.
Sampling rate. The sampling rate of NVIDIA CUPTI is
relatively low, which can lead to insufficient data for fast-
executing kernels. As a result, the golden model may fail
to capture enough information to validate kernel execution
accurately.
Events grouping. CUPTI enforces fixed event groupings,
preventing the simultaneous collection of certain event com-
binations. This limits the ability to fully observe kernel be-
havior during execution.
Profiling overhead. CUPTI-based profiling introduces mea-
surable runtime overhead. This can distort the behavior of
lightweight kernels and reduce the fidelity of the collected
traces.
Interference from concurrent kernels. When multiple
kernels run concurrently, event counters may overlap or
interfere with one another, making it difficult to isolate and
attribute events to specific kernels.

To address these limitations, we propose ShadowScope*, a
hardware-assisted framework for in-GPU kernel valida-
tion, as described in Section 5.

5 GPU-Centric ShadowScope

To address the challenges mentioned in Section 4.5, we pro-
pose ShadowScope®, a hardware-assisted framework for in-
GPU kernel validation that operates independently of the
CPU. ShadowScope* leverages the GPU’s existing hardware
PMUs in conjunction with a dedicated on-chip validator to
perform real-time validation of kernel execution. By localiz-
ing validation logic entirely within the GPU, ShadowScope*
minimizes performance overhead and improves parallelism.
Unlike CUPTI-based solutions, it also avoids the need for

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

GPU SM]
| Kernel Dispatcher | SIMT Front-End Re
{ "°9 ! SIMD Datapath
File
Fetch
sw |["sm s] T
PMU PMU PMU Schedule Memory Subsystem

ICNT
L2 Cache i } } } }
- PMU \—l Ll
4

| Device Memory |
|nc() |nc()

. Load Golden
Validator Model Metrics

metr 1|metr 2| «.. |metrn
ts | cntr 1 | cntr 2 |

Event

Successful? Cycle

Counter

1

@

act] entr 1 [cntr2] --. Tentrn Send Packet . Jentrn

To Validator

Buffer

PMU Aggr.
Cache

Figure 11. ShadowScope* high-level architecture.

privileged software components or driver-level modifica-
tions, thereby reducing the trusted computing base and eas-
ing deployment.

5.1 ShadowScope® Design

We equip each SM with a local PMU capable of independently
collecting performance data, as illustrated in Figure 11. This
is similar to Streaming Multiprocessor Performance Counter
(SMPC) model in NVIDIA GPUs [52, 60]. In addition, we intro-
duce an on-chip Validator module integrated into the GPU’s
Interconnection Network (ICNT) alongside other SMs and
memory partitions (including L2 cache slices). This Validator
is responsible for analyzing and validating the performance
samples collected by the local PMUs.

5.1.1 Performance Monitoring Unit (PMU). As illus-
trated in Figure 11, each SM in the proposed design integrates
a local PMU responsible for capturing microarchitectural
events during kernel execution. The PMU receives a set of
one-bit, cycle-wide signals from various SM components,
each signaling the occurrence of specific events, such as in-
struction type counts, L1 data cache hits or misses, warp
issues, or idle scheduler slots. These signals are routed to a
set of configurable multiplexers, each of which selects one
event signal to monitor. The selection logic is controlled via
firmware-accessible registers, as commonly used by tools
like NVIDIA Nsight [52] and CUPTI [47, 50]. Each multi-
plexer output is connected to a dedicated 32-bit up-counter
that increments on every cycle the selected event signal is
asserted. This straightforward yet effective design enables
fine-grained, per-SM event tracking with low overhead and
minimal disruption to kernel execution.

At the end of each sampling window, determined either
by a firmware-configurable cycle counter register or by the
end of the kernel execution, the PMU freezes all active coun-
ters and stores their values in a buffer entry, along with the
corresponding timestamp or cycle count (ts), and resets the

10

counters to zero in preparation for the next sampling win-
dow. In standard profiling mode (i.e., when kernel validation
is disabled), a lightweight dedicated DMA engine transfers
these buffer entries into a ring buffer located in the GPU’s
global device memory. This data can subsequently be used by
existing profiling tools for performance analysis and report-
ing, or leveraged by our framework to construct a golden
model representing the performance profile of a benign ker-
nel execution. When kernel validation is enabled, however,
ShadowScope* redirects the buffer entries to the Validator
module over the GPU interconnection network, utilizing idle
or underutilized bandwidth to minimize interference with
the primary workload.

5.1.2 Validator Module. As performance samples are re-
ceived from active PMUs, the Validator first consults a small
PMU aggregation cache, which tracks the accumulation of
performance counter values for each sampling window (iden-
tified by a timestamp) across active PMUs. Upon receiving a
packet, the Validator uses the timestamp as a cache tag to
look up the corresponding entry. If no entry exists, a new
one is created, and the active PMU count (act) field is initial-
ized based on the number of active PMUs for the currently
executing kernel, as specified by the kernel dispatcher. If an
entry is found, the incoming metric values are added to the
existing values in the cache entry and the act count is decre-
mented to reflect the arrival of data from one of the active
PMUs. Once the act count reaches zero, indicating that all
expected PMU samples for that window have been received,
the Validator reads the accumulated values and updates a set
of internal registers representing the total monitored met-
rics for that sampling window. These aggregated metrics are
then compared against the preloaded golden model values by
computing the distance between corresponding metric pairs,
as illustrated in Figure 11. If the distance for these metrics
exceeds a pre-defined threshold, tuned according to the sen-
sitivity and semantics of the selected metrics, the kernel is
flagged as potentially malicious. In such cases, the Validator
signals the kernel dispatcher to stop the kernel execution and
notifies the CPU through the GPU driver to initiate appro-
priate mitigation steps. If the comparison passes, indicating
no malicious behavior, the Validator proceeds to monitor
subsequent sampling windows.

5.2 ShadowScope* Mechanism

Figure 12 illustrates the operational flow of the proposed
monitoring and validation mechanism in ShadowScope*. At
the time of kernel invocation, the golden model correspond-
ing to Kernel 1 (K1) is loaded into the GPU’s global device
memory, where it is later accessed by the Validator for run-
time comparison. Kernel execution begins when the kernel
dispatcher assigns kernel to a set of active SMs. Upon dis-
patch, the dispatcher also notifies the Validator of the kernel
launch and the associated active SMs. Each of these SMs

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

Capturing PMU Events

Validation: [[__] Successful [II] Failed
)
{

PMU

A S T

efr % ife o
= 1 O
2 fiz R A
< 3= =
Validator :
K1 Execution K2 Execution Stop K2
;' ¢ Execution
) [] / [
CcPU
s § 3 8 35
o 8 o] S8s
<8 & 8 72T
5 £ 3 £ 23
N o
3 x S X

Figure 12. An overview of the ShadowScope* mechanism
for in-GPU kernel validation.

activates its local PMU, which begins collecting microarchi-
tectural performance events specific to the executing kernel.

During execution, each local PMU accumulates event sam-
ples and transmits them to the Validator at the end of every
predefined sampling window, or upon kernel completion.
The Validator then performs runtime validation by aggregat-
ing the metrics from all active PMUs and comparing them
against the expected values from the golden model for the
corresponding sampling window (as illustrated by the col-
ored boxes on the Validator timeline in Figure 12). If the
collected samples align with the golden model within ac-
ceptable thresholds, the kernel is classified as benign, and
execution continues without interruption (as indicated by
the green boxes in the timeline).

In contrast, if discrepancies are detected, such as devia-
tions in control flow or memory access behavior, as in the
case of Kernel 2 (K2), the Validator flags the violation by
identifying significant deviations (as indicated by the red
box in the timeline). It then signals the GPU to halt execu-
tion of the kernel and reports the anomaly and the offending
kernel (K2) to the CPU via the GPU driver.

5.3 Simulation Methodology

To implement and evaluate our proposed design, we extend
GPGPU-Sim v4.0 [24], a cycle-accurate simulator for NVIDIA
GPU architectures. Our proof-of-concept is modeled on a
small GPU configuration based on the NVIDIA Fermi ar-
chitecture and the GTX480 platform. Detailed simulation
parameters are provided in Table 3. For evaluation, we use
four CUDA Samples benchmarks, vectorAdd, matrixMul, his-
togram, and bitonicSort, along with two DNN models, AlexNet
and CifarNet. These workloads are used in Sections 5.4.1
and 5.4.2 to assess the effectiveness of the validation and
detection mechanisms, as well as to measure performance
overhead.

11

Table 3. Simulator configuration parameters.

Parameter Specification
Number of SMs 15
SM Configuration | Warps/SM = 48, Schedulers/SM =

2, Warps/Scheduler = 16, Register
File/SM = 32 KB

2 SPs, 1 SFUs

Execution Units

Shared Memory 48 kB, latency = 26 cycles
L1 Data Cache 16 KB, 8-sets, 16-ways
L2 Cache 786 KB, 64-sets, 16-ways, 6-banks

L1 =35 cycles, L2 = 120 cycles
GDDR5, latency = 220 cycles

SM,ICNT,L2:700 MHz, MEM:924
MHz

Min Access Latency

Memory Model

Frequency

5.4 Evaluation Results

5.4.1 Security Evaluation. We evaluate the detection ef-
fectiveness of ShadowScope™ in the presence of two known
GPU attacks: buffer overflow and mind-control attacks. To
quantify deviations in kernel execution, we employ normal-
ized Dynamic Time Warping (DTW) scores to measure the
similarity between benign and attack execution traces of the
same kernel, captured using custom hardware PMUs and
analyzed by the Validator proposed in ShadowScope®.
Kernel Deviation Attacks. Table 4 presents the average
and standard deviation of normalized DTW similarity scores
between benign and attack kernel executions across four
benchmarks. Lower scores indicate greater divergence from
expected behavior; typically, a score below 0.1 suggests low
similarity. Among the benchmarks, matMul shows the high-
est similarity score (0.0876), indicating minimal deviation,
while bitonicSort and vecAdd exhibit the lowest scores (0.0178
and 0.0181, respectively), reflecting more substantial devia-
tions caused by the attacks. Notably, vecAdd yields a standard
deviation of 0, as it contains only a single executed kernel.
These results demonstrate the effectiveness of our approach
in identifying anomalous executions.

Table 4. Normalized DTW similarity scores between benign
and attack traces.

Benchmarks Similarity score
average std
bitonicSort 0.0178 | 0.0151
histogram 0.0427 | 0.0315
matMul 0.0876 0.0088
vecAdd 0.0181 | -

Mind Control Attacks. In this attack, we evaluate AlexNet
and CifarNet. For AlexNet, using ShadowScope*, we collect
10 segments of traces during benign execution, with each

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

segment corresponding to the execution of one layer or ker-
nel. In the attack scenario, one layer is skipped, resulting
in only 9 segments being collected. This allows us to detect
that the second layer was skipped. Similarly, for CifarNet,
we also detect that the second layer is missing, indicating a
successful identification of the mind control attack.

5.4.2 Performance Evaluation. Figure 13 presents the
performance overhead introduced by ShadowScope* com-
pared to the baseline GPU architecture across the evaluated
benchmarks. Since both PMU event monitoring and kernel
validation occur off the critical path of kernel execution, their
impact on performance is minimal. The primary source of
overhead stems from the transfer of collected samples via
the GPU’s shared interconnection network by the local SM
PMUs, and the loading of golden model samples by the Val-
idator through shared memory channels into its local fetch
buffer. This leads to contention on the interconnect band-
width and memory channels, particularly in applications
that heavily utilize these shared resources, such as memory-
intensive workloads like DNN models. The results show that
ShadowScope™ incurs a geometric mean performance over-
head of 4.6% in terms of normalized IPC compared to the
baseline, with the lowest overhead observed in bitonicSort
at 0.4%, and the highest in CifarNet at 9.2%.

I CUDA Samples @ DNN Models

g
1=}

Normalized IPC
o o o
= o ©

e
)

o
o

Figure 13. Performance normalized to baseline GPU.

5.4.3 Hardware Complexity Evaluation. For our hard-
ware cost evaluation, each PMU is modeled with eight 32-bit
counter registers and eight 8-to-1 multiplexers to monitor
different microarchitectural events per counter. A 32-bit cy-
cle counter generates timestamps for sampling windows.
Each PMU includes an output buffer with eight 36-byte en-
tries (288 bytes total) to store timestamps and associated
metric values. The Validator’s fetch buffer mirrors this struc-
ture but at half the size, four entries totaling 144 bytes, to
hold golden model metrics loaded from the global device
memory of the GPU. The PMU aggregation buffer is imple-
mented as a simple cache with 33-byte blocks containing
eight metrics, an 8-bit active-SM counter value, and a 32-bit
timestamp as the tag. Aggregation is performed using eight
32-bit adders, while the Validator’s comparison logic con-
sists of eight subtractors, eight magnitude comparators, and

12

Table 5. Area and power overhead (percentage increase from
baseline) of integrating PMUs into each SM (reported per SM and
per GPU) and the Validator (reported relative to the entire GPU).

Component Metric Per SM Per GPU

Area Overhead (%) 0.03 0.02
PMU Static Power (%) 0.07 0.13
Dynamic Power (%) 0.28 0.26
Area Overhead (%) - 0.004
Validator Static Power (%) - 0.01
Dynamic Power (%) - 0.02
Total Area Overhead (%) 0.03
Total Static Power (%) 0.13
Total Dynamic Power (%) 0.28

a single threshold register to compute deviations from the
golden model.

We evaluated SRAM-based structures using CACTI [30]
using 40nm technology, the same technology used by Accel-
Wattch [23], for modeling the NVIDIA GTX480 GPU. Key
logic components, including counters, multiplexers, and com-
parators, were implemented in Verilog and synthesized us-
ing Synopsys Design Compiler 2017.09. Table 5 reports the
overhead of a single PMU relative to an SM, the cumula-
tive overhead of all PMUs relative to the full GPU, and the
Validator’s cost as a global module relative to the full GPU.

6 Related Work

Golden model validation. A variety of approaches have
been proposed for hardware trojan detection using golden
models, which are constructed from trusted hardware side-
channel data collected through physical sources such as
power, leakage current, and temperature [17, 26, 33, 57].
Attacks detection and software validation using hard-
ware performance counter (HPC). HPCs collected from
the PMU have been widely used to detect malware and side-
channel attacks by identifying deviations in software be-
havior. Demme at al. [10] explored the feasibility of using
HPC for malware and side channel detection in both ARM
and Intel CPUs. Lee et al. [29] proposed using HPC to de-
tect Spectre attacks by randomly selecting detectors, feature
sets, and sampling periods to improve robustness against
sophisticated threats. Khasawneh et al. [25] focused on de-
tecting evasive malware by designing a system with multiple
detectors and randomly selecting among them, making it
difficult for attackers to evade detection. Most prior work
using HPCs has focused on CPU-based systems and malware
detection, with limited emphasis on software validation and
little attention to attacks targeting GPU kernels.

Control flow attacks targeting GPU kernels. Park et
al. [55] proposed reducing the prediction accuracy of DNN
models by accessing arbitrary memory locations used by
targeted ML models. The attack is based on a buffer over-
flow attack which is used to inject random code to lower

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

the accuracy of ML models. Recently, Guo et al. [15] investi-
gated buffer overflow vulnerabilities in NVIDIA GPUs and
demonstrated traditional code injection attacks and ROP-
style attacks are possible on GPUs. Roels et al. [59] adapted
CPU-style code reuse attacks to NVIDIA GPUs, enabling
the discovery of new ROP gadgets and the construction of
Turing-complete ROP attacks on GPUs.

Exploiting PMU as a side channel in GPUs. By collecting
data from GPU PMU during victim kernel execution, attack-
ers can leak secret information about the victim. Naghibi-
jouybari et al. [40] exploited performance counters reflecting
shared resource usage between victim and attacker to per-
form a series of side-channel attacks. Wei et al. [67] exploited
data collected from GPU PMU to monitor context switches
during DNN model training to learn targeted model layers
and parameters. Wang et al. [65] also targeted DNN to per-
form model extraction attacks and mainly targeted events
related to a unified memory management system which they
found to have higher effectiveness.

Software and hardware defenses in GPUs. Hardware and
software-based approaches propose the implementation of
TEEs in GPUs. Volos et al. [64] to secure GPU kernels with
no modification to CPU. Their approach only changes the
command processor within GPU for TEE support. Jang et
al. [21] also proposed TEE support for GPU. Their design
requires modifications to the I/O interconnect and changes
to the GPU driver to be included within CPU TEE. NVIDIA
H100 includes hardware support for confidential computing
(CC) targeting virtualized environment [45]. To isolate a
virtual machine (VM), H100 CC requires support for TEE at
the CPU side as well. TEE at the CPU side can be achieved
through Intel TDX [19], AMD SEV-SNP [4], or ARM CCA [6].
Software attestation using side channels. Existing work
also proposed using side channels such as power and electro-
magnetic signals for good use such as software attestation.
Side channel data of program execution based on electro-
magnetic signals are used to detect deviations in program
execution [44, 62]. This research targeted embedded systems
and assumes predictable execution; ShadowScope extends
the range of such approaches using the idea of composable
verification. A line of research uses performance counters on
CPUs to classify programs as benign or malicious [2, 25, 54];
however, these approaches provide a weaker protection since
they do not verify the correct execution of a program.

7 Concluding Remarks

We present ShadowScope, a robust monitoring and validation
framework for GPU kernel execution based on composable
golden models derived from side-channel signals. By captur-
ing modular and repeatable execution patterns, ShadowScope
effectively detects both anomalous behavior within trusted
kernels and signs of kernel compromise. It detects four types
of attacks with up to 100% true positive rate and low false

13

positive rates. To further reduce noise sensitivity and perfor-
mance overhead, we introduce ShadowScope*, a lightweight
hardware-assisted mechanism for on-chip validation, achiev-
ing accurate detection with only 4.6% performance overhead.

References

[1] Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers.
General-purpose graphics processor architectures, 2018.

[2] Samira Mirbagher Ajorpaz, Daniel Moghimi, Jeffrey Neal Collins,
Gilles Pokam, Nael Abu-Ghazaleh, and Dean Tullsen. Evax: Towards
a practical, pro-active & adaptive architecture for high performance
& security. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1218-1236. IEEE, 2022.

[3] Amazon. What is a GPU? https://aws.amazon.com/what-is/gpu/. Last
accessed on: 07/31/2024.

[4] AMD. AMD Secure Encrypted Virtualization
https://www.amd.com/en/developer/sev.html.
on: 05/25/2025.

[5] AMD. GPUPerfAPI. https://gpuopen.com/gpuperfapi/. Last accessed
on: 07/27/2024.

[6] arm. Confidential
https://www.arm.com/architecture/security-features/arm-
confidential-compute-architecture. Last accessed on: 05/25/2025.

[7] Caroline Collange. GPU architecture:
Revisiting the SIMT execution model.
http://www.irisa.fr/alf/downloads/collange/cours/hpca2020_gpu_0.pdf.
Last accessed on: 07/31/2024.

[8] Alexander Cathis, Mulong Luo, Mohit Tiwari, and Andreas Gerstlauer.
Lapd: Lifecycle-aware power-based malware detection. IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST),
2025.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite

for heterogeneous computing. In 2009 IEEE International Symposium

on Workload Characterization (IISWC), pages 44-54, 2009. doi:10.
1109/IISWC.2009.5306797.

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam

Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On the fea-

sibility of online malware detection with performance counters. In

Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA *13, page 559-570, New York, NY, USA, 2013. Asso-

ciation for Computing Machinery. doi:10.1145/2485922.2485970.

Bang Dj, Jianhua Sun, and Hao Chen. A study of overflow vulnerabil-

ities on gpus. In Network and Parallel Computing: 13th IFIP WG 10.3

International Conference, NPC 2016, Xi’an, China, October 28-29, 2016,

Proceedings, page 103-115, Berlin, Heidelberg, 2016. Springer-Verlag.

doi:10.1007/978-3-319-47099-3_9.

Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon,

Yutong Zhao, Kyle A Beauchamp, Lee-Ping Wang, Andrew C Sim-

monett, Matthew P Harrigan, Chaya D Stern, et al. Openmm 7: Rapid

development of high performance algorithms for molecular dynamics.

PLoS computational biology, 13(7):e1005659, 2017.

Christopher Erb, Mike Collins, and Joseph L. Greathouse. Dynamic

buffer overflow detection for GPGPUs. In 2017 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), pages 61-73,

2017. doi:10.1109/CG0.2017.7863729.

Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

Grand pwning unit: Accelerating microarchitectural attacks with the

gpu. In 2018 ieee symposium on security and privacy (sp), pages 195-210.

IEEE, 2018.

Yanan Guo, Zhenkai Zhang, and Jun Yang. GPU Memory Exploitation

for Fun and Profit. In 33rd USENIX Security Symposium (USENIX

Security 24), pages 4033-4050, 2024.

(SEV).

Last accessed

Arm Compute Architecture.

[10]

[11]

[12]

[13]

[14]

[15]

https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/2485922.2485970
https://doi.org/10.1007/978-3-319-47099-3_9
https://doi.org/10.1109/CGO.2017.7863729

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Ghadeer Almusaddar, Yicheng Zhang, Saber Ganjisaffar, Barry Williams, Yu David Liu, Dmitry Ponomarev, and Nael Abu-Ghazaleh

Sunny L He, Natalie H Roe, Evan Wood, Noel M Nachtigal, and Jovana
Helms. Model of the product development lifecycle. Technical report,
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
2015.

Kanggiao Hu, Abdullah Nazma Nowroz, Sherief Reda, and Farinaz
Koushanfar. High-sensitivity hardware trojan detection using mul-
timodal characterization. In 2013 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), pages 12711276, 2013. doi:
10.7873/DATE.2013.263.

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xin-
feng Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. Deepsniffer:
A dnn model extraction framework based on learning architectural
hints. In Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 385-399, 2020.

intel. Intel® Trust Domain Extensions.
https://www.intel.com/content/www/us/en/developer/tools/trust-
domain-extensions/overview.html. Last accessed on: 05/25/2025.
Andrei Ivanov, Benjamin Rothenberger, Arnaud Dethise, Marco
Canini, Torsten Hoefler, and Adrian Perrig. {SAGE}: Software-based
attestation for {GPU} execution. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 485-499, 2023.

Insu Jang, Adrian Tang, Taechoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. Heterogeneous isolated execution for commodity gpus.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 19, page 455-468, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3297858.3304021.

Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig,
Ahmad-Reza Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran.
{TheHuzz}: Instruction fuzzing of processors using {Golden-
Reference} models for finding {Software-Exploitable} vulnerabili-
ties. In 31st USENIX Security Symposium (USENLX Security 22), pages
3219-3236, 2022.

Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh
Manjunath, Timothy G Rogers, Tor M Aamodt, and Nikos Hardav-
ellas. Accelwattch: A power modeling framework for modern gpus.
In MICRO-54: 54th Annual IEEE/ACM International symposium on mi-
croarchitecture, pages 738-753, 2021.

Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G
Rogers. Accel-sim: An extensible simulation framework for validated
gpu modeling. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 473-486. IEEE, 2020.

Khaled N. Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Lei Yu. Rhmd: Evasion-resilient hardware malware detectors. In 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 315-327, 2017.

Charles Lamech, James Aarestad, Jim Plusquellic, Reza Rad, and Kanak
Agarwal. Rebel and tdc: Two embedded test structures for on-chip
measurements of within-die path delay variations. In 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
170-177, 2011. doi:10.1109/ICCAD.2011.6105322.

Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and
Hyesoon Kim. Securing gpu via region-based bounds checking. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture, pages 27-41, 2022.

Itamar Levi, Davide Bellizia, David Bol, and Frangois-Xavier Standaert.
Ask less, get more: Side-channel signal hiding, revisited. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 67(12):4904-4917,
2020.

Congmiao Li and Jean-Luc Gaudiot. Detecting spectre attacks using
hardware performance counters. IEEE Transactions on Computers,
71(6):1320-1331, 2022. doi:10.1109/TC.2021.3082471.

14

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P
Jouppi. Cacti-p: Architecture-level modeling for sram-based struc-
tures with advanced leakage reduction techniques. In 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
694-701. IEEE, 2011.

Chris S Lin, Joyce Qu, and Gururaj Saileshwar. ~Gpuhammer:
Rowhammer attacks on gpu memories are practical. arXiv preprint
arXiv:2507.08166, 2025.

Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang, Wenyuan Xu,
and Qiang Xu. On code execution tracking via power side-channel.
In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 1019-1031, 2016.

Yu Liu, Yier Jin, and Yiorgos Makris. Hardware trojans in wireless cryp-
tographic ics: Silicon demonstration & detection method evaluation.
In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 399-404, 2013. doi:10.1109/ICCAD.2013.6691149.
Stefan Mangard. Hardware countermeasures against dpa-a statistical
analysis of their effectiveness. In Topics in Cryptology—CT-RSA 2004:
The Cryptographers’ Track at the RSA Conference 2004, San Francisco,
CA, USA, February 23-27, 2004, Proceedings, pages 222-235. Springer,
2004.

Meta. Llama. https://llama.meta.com. Last accessed on: 07/31/2024.
Andrea Miele. Buffer overflow vulnerabilities in cuda: a preliminary
analysis. Journal of Computer Virology and Hacking Techniques, 12:113—
120, 2016.

A Molina and Oswaldo Cadenas. Functional verification: Approaches
and challenges. Latin American applied research, 37(1):65-69, 2007.
Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 39(8):1555-1571, 2019.

Hoda Naghibijouybari, Khaled N Khasawneh, and Nael Abu-Ghazaleh.
Constructing and characterizing covert channels on gpgpus. In Pro-
ceedings of the 50th annual IEEE/ACM international symposium on
microarchitecture, pages 354-366, 2017.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. Rendered insecure: Gpu side channel attacks are practical.
In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 2139-2153, 2018.

Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-
Yung Lin. Graphbig: understanding graph computing in the context
of industrial solutions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1-12, 2015.

Ravan Nazaraliyev, Saber Ganjisaffar, Nurlan Nazaraliyev, and Nael
Abu-Ghazaleh. Practical: Subarray-level counter update and bank-
level recovery isolation for efficient prac rowhammer mitigation. arXiv
preprint arXiv:2507.18581, 2025.

Ravan Nazaraliyev, Yicheng Zhang, Sankha Baran Dutta, Nael Abu-
Ghazaleh, Andres Marquez, and Kevin Barker. Not so refreshing:
Attacking gpus using rfm rowhammer mitigation. In 34th USENIX
Security Symposium (USENIX Security 25), 2025.

Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and
Milos Prvulovic. Eddie: Em-based detection of deviations in program
execution. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, pages 333-346, 2017.

NVIDIA. Confidential Compute on NVIDIA Hopper H100.
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/HCC-Whitepaper-v1.0.pdf. Last accessed on: 05/25/2025.
NVIDIA. CUDA C++ Programming Guide.
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html. Last accessed on: 07/31/2024.

NVIDIA. CUPTL https://docs.nvidia.com/cupti/. Last accessed on:
07/16/2024.

https://doi.org/10.7873/DATE.2013.263
https://doi.org/10.7873/DATE.2013.263
https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1109/ICCAD.2011.6105322
https://doi.org/10.1109/TC.2021.3082471
https://doi.org/10.1109/ICCAD.2013.6691149

ShadowScope: GPU Monitoring and Validation via Composable Side Channel Signals

(48]
(49]

(50]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

(62]

(63]

[64]

NVIDIA. CUPTI Event APL https://docs.nvidia.com/cupti/api/group_
_CUPTI__EVENT__APILhtml. Last accessed on: 06/04/2025.
NVIDIA. Parallel Thread Execution. https://docs.nvidia.com/cuda/
parallel-thread-execution/.

NVIDIA. CUPTL: User Guide.
https://docs.nvidia.com/cuda/archive/11.0_GA/cupti/pdf/Cupti.pdf,
2022. Last accessed on: 07/18/2024.

NVIDIA. NVIDIA CUDA samples. https://github.com/NVIDIA/cuda-
samples, 2024.

NVIDIA Corporation. Nsight Visual Studio Edition 4.6 User Guide:
Performance Counters. https://docs.nvidia.com/nsight-visual-
studio-edition/4.6/Content/Analysis/Report/CudaExperiments/
KernelLevel/PerformanceCounters.htm, 2024. Accessed on
05/29/2025.

OpenAl Introducing ChatGPT. https://openai.com/index/chatgpt/.
Last accessed on: 07/31/2024.

Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gore-
lik, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based
malware detection using low-level architectural features. IEEE Trans-
actions on Computers, 65(11):3332-3344, 2016.

Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and
Hyunsoo Yoon. Mind control attack: Undermining deep learn-
ing with gpu memory exploitation. Computers & Security,
102:102115, 2021. URL: https://www.sciencedirect.com/science/article/
pii/S0167404820303886, doi:10.1016/j.cose.2020.102115.

Kartik Patwari, Syed Mahbub Hafiz, Han Wang, Houman Homayoun,
Zubair Shafiq, and Chen-Nee Chuah. Dnn model architecture finger-
printing attack on cpu-gpu edge devices. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 337-355. IEEE,
2022.

Reza Rad, Jim Plusquellic, and Mohammad Tehranipoor. Sensitivity
analysis to hardware trojans using power supply transient signals. In
2008 IEEE International Workshop on Hardware-Oriented Security and
Trust, pages 3-7, 2008. doi:10.1109/HST.2008.4559037.

Reza M Rad, Xiaoxiao Wang, Mohammad Tehranipoor, and Jim
Plusquellic. Power supply signal calibration techniques for improving
detection resolution to hardware trojans. In 2008 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 632-639. IEEE,
2008.

Jonas Roels, Adriaan Jacobs, and Stijn Volckaert. Cuda, woulda,
shoulda: Returning exploits in a sass-y world. In Proceedings of the
18th European Workshop on Systems Security, EuroSec’25, page 40-48,
New York, NY, USA, 2025. Association for Computing Machinery.
doi:10.1145/3722041.3723099.

Alvaro Saiz, Pablo Prieto, Pablo Abad, Jose Angel Gregorio, and
Valentin Puente. Top-down performance profiling on nvidia’s GPUs.
In 2022 IEEE international parallel and distributed processing symposium
(IPDPS), pages 179-189. IEEE, 2022.

Stan Salvador and Philip Chan. Toward accurate dynamic time warp-
ing in linear time and space. Intelligent data analysis, 11(5):561-580,
2007.

Nader Sehatbakhsh, Alireza Nazari, Haider Khan, Alenka Zajic, and
Milos Prvulovic. Emma: Hardware/software attestation framework for
embedded systems using electromagnetic signals. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 983-995, 2019.

Hritvik Taneja and Moinuddin Qureshi. Roguerfm: Attacking refresh
management for covert-channel and denial-of-service. arXiv preprint
arXiv:2501.06646, 2025.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted
execution environments on GPUs. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 681
696, Carlsbad, CA, October 2018. USENIX Association. URL: https:
//www.usenix.org/conference/osdi18/presentation/volos.

15

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Zhendong Wang, Xiaoming Zeng, Xulong Tang, Danfeng Zhang, Xing
Hu, and Yang Hu. Demystifying arch-hints for model extraction: An
attack in unified memory system, 2022. URL: https://arxiv.org/abs/
2208.13720, arXiv:2208.13720.

Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. Simultaneous multikernel: Fine-grained shar-
ing of gpus. IEEE Computer Architecture Letters, 15(2):113-116, 2015.
Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdul-
lah Al Faruque. Leaky DNN: Stealing deep-learning model secret with
gpu context-switching side-channel. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 125-137. IEEE, 2020.

Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali
Annavaram. Warped-slicer: Efficient intra-sm slicing through dynamic
resource partitioning for gpu multiprogramming. ACM SIGARCH
Computer Architecture News, 44(3):230-242, 2016.

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. {DeepHammer }: Deplet-
ing the intelligence of deep neural networks through targeted chain
of bit flips. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1463-1480, 2020.

Wei Zhang. Defend GPUs against DoS attacks . In 2013 IEEE 32nd
International Performance Computing and Communications Conference
(IPCCC), pages 1-2, Los Alamitos, CA, USA, December 2013. IEEE
Computer Society. URL: https://doi.ieeecomputersociety.org/10.1109/
PCCC.2013.6742758, doi:10.1109/PCCC.2013.6742758.

Yicheng Zhang, Ravan Nazaraliyev, Sankha Baran Dutta, Nael Abu-
Ghazaleh, Andres Marquez, and Kevin Barker. Beyond the bridge:
Contention-based covert and side channel attacks on multi-gpu in-
terconnect. In 2024 International Symposium on Secure and Private
Execution Environment Design (SEED), pages 35-36. IEEE, 2024.
Yicheng Zhang, Ravan Nazaraliyev, Sankha Baran Dutta, Andres Mar-
quez, Kevin Barker, and Nael Abu-Ghazaleh. Nvbleed: Covert and
side-channel attacks on nvidia multi-gpu interconnect. arXiv preprint
arXiv:2503.17847, 2025.

Zhenkai Zhang, Kunbei Cai, Yanan Guo, Fan Yao, and Xing Gao.
{Invalidate+ Compare}: A {Timer-Free}{GPU} cache attack primi-
tive. In 33rd USENIX Security Symposium (USENILX Security 24), pages
2101-2118, 2024.

https://docs.nvidia.com/cupti/api/group__CUPTI__EVENT__API.html
https://docs.nvidia.com/cupti/api/group__CUPTI__EVENT__API.html
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/PerformanceCounters.htm
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/PerformanceCounters.htm
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/PerformanceCounters.htm
https://www.sciencedirect.com/science/article/pii/S0167404820303886
https://www.sciencedirect.com/science/article/pii/S0167404820303886
https://doi.org/10.1016/j.cose.2020.102115
https://doi.org/10.1109/HST.2008.4559037
https://doi.org/10.1145/3722041.3723099
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://arxiv.org/abs/2208.13720
https://arxiv.org/abs/2208.13720
https://arxiv.org/abs/2208.13720
https://doi.ieeecomputersociety.org/10.1109/PCCC.2013.6742758
https://doi.ieeecomputersociety.org/10.1109/PCCC.2013.6742758
https://doi.org/10.1109/PCCC.2013.6742758

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Execution Security
	2.2 PMU on GPUs

	3 System Overview
	3.1 Threat Model and Design Goals
	3.2 Overview of ShadowScope
	3.3 Instrumenting GPU Kernels with Composable Functions
	3.4 Side-channel Data Collector
	3.5 Golden Reference Model of GPU Kernels
	3.6 Untested Kernel Validation

	4 Software Instantiation of ShadowScope on NVIDIA GPUs
	4.1 Events Selection and Grouping
	4.2 Targeted Attacks
	4.3 Evaluation Results
	4.4 Robustness to Noise
	4.5 Limitation of Existing PMU

	5 GPU-Centric ShadowScope
	5.1 ShadowScope+ Design
	5.2 ShadowScope+ Mechanism
	5.3 Simulation Methodology
	5.4 Evaluation Results

	6 Related Work
	7 Concluding Remarks
	References

