
Not so Refreshing: Attacking GPUs using RFM Rowhammer Mitigation

Ravan Nazaraliyev∗ 1, Yicheng Zhang1, Sankha Baran Dutta2, Andres Marquez3, Kevin Barker3, Nael
Abu-Ghazaleh† 1

1University of California, Riverside
2Brookhaven National Laboratory

3Pacific Northwest National Laboratory

Abstract
Graphics Processing Units (GPUs) have become a critical part
of computing systems at all scales. In this paper, we demon-
strate new side channel attacks targeting the Graphics DDR
(GDDR) memory chips. While several studies have demon-
strated attacks on CPU memory chips, revealing potential
security vulnerabilities, these attacks do not easily transfer to
GPU memories, due to differences in the microarchitecture
and operational characteristics of GDDR memory and GPU
memory controllers, as well as the distinct computational
model of GPUs. We reverse-engineer the mapping of phys-
ical addresses to GDDR physical bank addresses and show
that existing row buffer timing attacks on these systems are
ineffective due to row buffer management policies. Instead,
our attacks target the Refresh Management (RFM) feature
engineered into modern memories to mitigate Rowhammer
vulnerabilities. We identify RFM-based timing leakage where
repeated accesses to the same bank trigger refresh events, lead-
ing to measurable differences in access times. We exploit this
leakage to first construct covert channel attacks on a shared
GPU, achieving a bandwidth of over 50 KBps per bank with a
low error rate of 0.03%. We demonstrate two end-to-end side-
channel attacks on discrete GPUs with GDDR6: application
fingerprinting and 3D object rendering fingerprinting within
Blender, achieving F1 scores of up to 95% and 98%, respec-
tively. Additionally, we implement three side-channel attacks
on GPU-based SoCs using LPDDR5 memory: application
fingerprinting, web fingerprinting, and video fingerprinting,
achieving high F1 scores. Finally, we present a Denial of
Service (DoS) attack, where the attacker leverages the RFM
blocking to slow down applications by over 4.8× on average.

1 Introduction

GPUs are becoming increasingly important across a broad
range of data-intensive applications, ranging from graph-

∗rnaza005@ucr.edu
†naelag@ucr.edu

ics rendering [35], machine learning training and infer-
ence [47, 73] to scientific computation [53]. Due to their
highly parallel computational models, GPU memories are
architected to meet these high-bandwidth demands, in ways
different from conventional CPU-based systems. For instance,
GDDR chips are used in commodity GPUs (e.g., GeForce
RTX 40 series [58]), while High Bandwidth Memory (HBM)
chips are used in data center GPUs (e.g., A100 [57]).

For the past decade, Dynamic Random Access Mem-
ory (DRAM) has proven vulnerable to Rowhammer at-
tacks [16, 23, 24, 37, 49, 50, 69, 75, 77]. These attacks ex-
ploit a vulnerability in DRAM where repeatedly accessing
(or "hammering") a specific row can cause electrical interfer-
ence that causes bit flips in adjacent rows. This vulnerability
can be leveraged to gain root privileges, or otherwise com-
promise victim applications [69]. Subsequently, groups of
researchers adapted rowhammer attacks to different architec-
tures [16, 23, 24], and systems including networks [75] and
mobile phones [77]. Since these attacks can be launched re-
motely from software, they form a substantial threat to modern
computing systems.

The first widely adopted mitigation of Rowhammer attacks
is the idea of Target Row Refresh (TRR) [36, 39], where the
system (the memory controller or the DRAM chip) tracks
the most heavily accessed rows and triggers a refresh of their
neighbors when the accesses reach a pre-defined threshold.
Different companies had their own proprietary implementa-
tions of TRR, and new attacks demonstrated gaps in TRR
protection often based on the limited number of rows that can
be tracked [16, 23]. More recently, the JEDEC community, a
non-profit DRAM industry trade organization, introduced a
standard mitigation mechanism known as Refresh Manage-
ment (RFM) [17, 30, 31, 34, 38, 44]. RFM shares the overall
philosophy of TRR in identifying heavily accessed mem-
ory rows and refreshing them, but does some of the tracking
and actions at the granularity of banks or sub-banks to sup-
port scalability. Moreover, under some circumstances, RFM
blocks the bank until the next refresh operation. Modern DDR
manufacturers widely implement this RFM solution to pro-



tect GDDR chips [26]; it is also used in a number of other
DRAM standards including DDR5, HBM3, LPDDR4/4X,
and LPDDR5 [27–30]. The GDDR6/6X [26] standard is the
first generation of GDDR to use RFM. We discuss RFM and
reverse engineer some of its operational details in § 3.

In this paper, we show that the use of RFM to mitigate
Rowhammer unintentionally introduces new security prob-
lems including covert channels, side channels, and denial of
service vulnerabilities. RFM uses activation counters to track
the number of activations sent to a DRAM bank. These coun-
ters trigger different actions such as refreshing target rows, or
even temporarily blocking the bank until the next refresh oper-
ation. The root of the vulnerabilities is that the RFM counters
are associated with the physical bank and therefore shared
among applications with memory mapped to each bank; allo-
cation of physical pages naturally allows pages of different
applications to share banks. Refresh actions lead to detectable
timing variations, leading to timing leakage. Moreover, de-
nial of service vulnerabilities can arise when a malicious
application drives bank counters to initiate blocking, severely
limiting access to those banks.

The RFM-based leakage is a different source of leak-
age than prior attacks on DDR such as DRAMA [65]. We
show that DRAMA style attacks are challenging to carry
out in GDDR due to the short row buffer timeout (limiting
row-buffer contention leakage), and physical memory allo-
cation policies (preventing row-buffer co-residency among
processes). Specifically, on GDDR memories, the memory
controller has a small time-out interval before closing a row
after access to the row is complete. The high global memory
access latency and small time-out interval for open row buffer
severely limit leakage through the row buffer, interfering with
the DRAMA row buffer contention attacks. Moreover, the
allocation of physical pages does not allow the sharing of a
single DRAM row between applications, therefore eliminat-
ing the potential for DRAMA [65] row buffer co-residency
based attacks. Our attacks exploit a different phenomenon;
rather than detecting the timing difference between row buffer
hits and misses, we detect the timing difference when bank
blocking occurs, which leaks the number of bank-level activa-
tions.

To successfully launch our attacks, we overcome several
challenges originating from the GPU execution model and
memory hierarchy, as well as from the nature of GDDR. First,
we reverse engineer DRAM address translation from physical
addresses to bank addresses and develop approaches so that
virtual-to-physical address translation is not needed. We also
reverse engineer RFM operation and interactions between the
memory controller and DRAM. Using this information, we
construct attacks on multiple NVIDIA GeForce RTX GPUs
and an NVIDIA SoC (Jetson AGX Orin). On the discrete
GPUs, we demonstrate a high-quality covert channel band-
width of over 50 KBps per bank (bandwidth can be further in-
creased by communicating across multiple banks in parallel),

with a low error rate. We next demonstrate two side channel
attacks on NVIDIA GeForce RTX GPUs with GDDR6: (1) ap-
plication fingerprinting; and (2) inferring rendered characters
in a 3D rendering application, both with over 90% F1 scores.
In addition, we implement three side channel attacks on the
Jetson AGX Orin which uses LPDDR5 memory: application
fingerprinting, web fingerprinting, and video fingerprinting,
all with F1 scores exceeding or approaching 90%. Moreover,
we present a slowdown attack where a malicious program in-
tentionally causes expensive memory blocking to slow down
other applications over 4.8 times on a selected benchmark.

In summary, the contributions of this paper are:

• We reverse-engineer GDDR physical page to DRAM
bank addressing on several generations of NVIDIA
GPUs. We also propose deterministic physical page al-
location approaches that overcome the need to know
the virtual to physical mapping when developing RFM
conflict sets.

• We reverse engineer RFM operation and identify oppor-
tunities for timing leakage. This includes finding conflict
sets and identifying timing behavior and interactions
between the memory controller and DRAM.

• We demonstrate an RFM leakage-based covert channel
of high bandwidth with a low error rate on two genera-
tions of NVIDIA GPUs.

• We demonstrate five side-channel attacks on discrete
GPUs or SoCs to identify co-located CUDA applications,
3D character rendering, CPU applications, browsed web-
sites, and played videos, achieving F1 scores exceeding
or approaching 90%.

• We demonstrate a slow-down attack, where a malicious
process can intentionally push RFM to block banks and
slow co-located applications (by an average factor of
4.8x).

Although we explore RFM in the context of GDDR6, it is
also part of the DDR5, HBM3, LPDDR4/4X, LPDDR5 [27–
30] standard and is likely to impact CPU-based and mobile
systems as well. It is also interesting that the source of the
vulnerability is a feature designed to improve the security of
the system; it is important to think about security holistically.

2 Background and Threat Model

In this section, we first provide an overview of GDDR memo-
ries and RFM protection mechanisms. We also introduce our
threat model.



Figure 1: GDDR6 channel organization.

2.1 GDDR

Contemporary DRAM systems are organized into a multi-
tiered hierarchy comprising memory channels, Dual In-line
Memory Modules (DIMMs), ranks, and banks. On a CPU-
based system, ranks are composed of multiple chips with typ-
ical numbers of four or eight per rank. Each DRAM chip is
subdivided into banks, which are further segmented into rows
and columns. Graphics DDR chips are typically mounted di-
rectly on the circuit board surrounding the GPU chip, with
each GDDR chip interfacing with the GPU chip through a
dedicated 32-bit wide channel. A distinctive aspect of this
architecture is that each GDDR chip has its own indepen-
dent memory channel, managed by its own discrete Memory
Controller (MC) embedded within the GPU chip.

GDDR6 DRAM chips differ from GDDR5 chips by incor-
porating what are known as independent channels. As shown
in Figure 1, a single memory bank is divided into two in-
dependent channels. Each of the two 16-bit wide channels
can independently process memory requests, creating a cu-
mulative 32-bit data path. GDDR chip architecture shares
similarities with other DDR memories, particularly in terms
of bank organization, and the use of row buffers, rows, and
columns. The row buffer plays a key role in facilitating data
communication with external components. When an ACTI-
VATE command is received, the row buffer activates an entire
row, after which specific columns of bits are accessed and
read from the buffer. GPU threads can access any address
within the allocated global memory space. When a thread
requests data from global memory, the access is first checked
in the cache hierarchy, including the local L1 cache and the
shared L2 cache. If the data is not found in these caches, the
request is forwarded to a memory controller, which decodes
the requested physical address into bank, channel, row, and
column values. A memory coalescing unit combines accesses
to the same cache line across different threads of a single
warp executing the same instruction to reduce the number of
memory accesses.

When a row is active within the row buffer and a different
row needs to be accessed, the memory controller issues a
PRECHARGE command to the GDDR chip. This command
closes the currently active row, thereby allowing a new row to
be activated. Closing the row and precharging the row buffer
for the new access incurs some overhead. Conversely, if a

t1 t2 t3 t4 t5

MAX
Blocked

INITIAL

Time Steps

A
ct

iv
at

io
n

C
ou

nt
er

Figure 2: The RFM mechanism.

subsequent data request is for the same row that is already
active, it results in a row buffer hit. The memory controller’s
handling of the row buffer is contingent upon its policy. Typ-
ically, after activating a row, memory controllers maintain
the row buffer open for a timeout interval so that the next
requests hitting the same row can be directly served from the
row buffer [6, 20]. Modern memory controllers are typically
equipped with adaptive page policies [20] which dynamically
adjust the behavior of the row buffer based on the pattern of
memory accesses. Prior DRAM attacks such as DRAMA [65],
rely on controllers that use open-page or adaptive page policy.
The effectiveness of this attack heavily relies on the timeout
interval for the open row buffer.

2.2 Refresh Management
To mitigate Rowhammer attacks on DRAM chips, the idea of
refreshing frequently-accessed rows was proposed soon after
the attack was introduced [36, 39], culminating in a class of
solutions called in-DRAM Target Row Refresh (TRR). Differ-
ent DRAM vendors had different proprietary implementations
of TRR that varied in terms of which and how many rows are
monitored, and when to trigger a refresh. Recent attacks have
shown that many of the TRR implementations are vulnerable
to many-sided Rowhammer attacks [16]. These attacks gener-
ate access to many rows. As a result, the TRR logic cannot
track all frequently accessed rows, leaving some rows vulner-
able to the attack, and resulting in bit flips. Moreover, TRR
issues victim row refreshes at during periodic REFRESH pe-
riods (typically around 7.8 µs), an attacker can send a pattern
of row activations during this period with no TRR protection.
In a similar vein, Jattke et al. [23] showed that non-uniform
access patterns that work around the refresh schedule and
include random accesses to fool the TRR logic can induce
even more bit flips than uniform many-sided attacks. These
patterns trick TRR into refreshing random rows while the
attacker activates their target rows.

Refresh Management (RFM) was introduced in new sets of
JEDEC standards for LPDDR4/4X, HBM3, and GDDR6 [26–
28]. RFM is implemented across both the memory controller



(MC) and DRAM chips, effectively sharing the operational
responsibilities [17, 34]. The protection mechanism in RFM
leverages ideas similar to TRR, generating refresh operations
to suspected victim rows, but with important differences in
implementation and granularity to help close some of the
attacker opportunities. In addition to using a sampler that
tracks heavily accessed rows, RFM incorporates a counter
that records the number of row activation requests sent to a
memory region, such as a memory bank [26] or sub-bank [34].
RFM provides memory controllers (MCs) with an RFM com-
mand, offering an external interface to DRAM chips control-
lable by the MC.

RFM aggressively approaches mitigating Rowhammer at-
tacks [17]. Typically, RFM uses two threshold values for
activations for each memory region [26, 34]: an initial or in-
termediate threshold and a higher maximum threshold. When
the activation counter for a memory region reaches the initial
threshold, the memory controller (MC) can issue an RFM
command, prompting the DRAM chip to initiate refreshes of
victim rows, similar to TRR, but triggered on demand rather
than periodically. If the activation counter reaches the max-
imum threshold, the corresponding memory region will no
longer accept further memory accesses. This blocking can
occur due to exceeding the high threshold on the number of ac-
tivation requests within the memory region. Moreover, RFM
commands can be delayed for performance reasons by the
memory controller even when the activation counter exceeds
the initial threshold [26], leading to blocking until the RFM
command is received. When refreshes occur, the access coun-
ters are reduced; when they fall below the blocking threshold,
the memory region becomes accessible again.

An illustration of RFM operation is depicted in Figure 2.
At time steps t1, t2 and t3, the (MC) issues RFM commands,
leading to refreshing the hot-rows, and a reduction in the
counter by a designated fixed value [26]. Although the plot
illustrates this reduction as instantaneous, the process is time-
consuming because RFM allocates an additional time win-
dow for the completion of refreshes [7, 26]. Following t3,
the counter increases to its maximum permissible limit (the
maximum threshold), at which point the memory region be-
comes blocked, preventing further activation until the counter
is reduced at t4 after a refresh cycle or an RFM command.
If memory accesses continue to the bank, the counter may
increase again and result in the bank being blocked, leading
to significantly high access latency.

Although the RFM mechanism is standardized, as depicted
in Figure 2, proprietary implementations vary in different
ways. For instance, an AMD patent [34] describes how de-
signs can differ in how they track sub-banks. Additionally,
some implementations may employ a single threshold, where
the initial and maximum thresholds are identical, or config-
ure the thresholds differently. Furthermore, the mechanism
can be configured to rely on using the standard REF com-
mands instead of issuing RFM commands, as REF is often

faster [34].
To summarize, RFM introduces two types of behaviors: (1)

every time the initial threshold is reached (when an RFM com-
mand triggers refreshes), and (2) when the maximum thresh-
old is reached (leading to bank/sub-bank blocking). While the
overall standard is described in detail [26, 30, 31], significant
variations are possible [17] both in the operation of the mem-
ory controllers (e.g., , different thresholds and optimizations
to merge refreshes), and the DRAM vendors (e.g., , distinct
implementation of hot row tracking and refreshing in response
to RFM commands) that need to be reverse engineered for
each GPU system. Nevertheless, the delays observed for the
two types of refresh are detectable by applications that access
a bank undergoing either an RFM refresh or blocking. These
delays are the primary sources of leakage we target in our
side channel attacks, while the blocking behavior is the vector
enabling the slowdown attacks.

2.3 Threat Model
Our threat model is similar to previous works [41, 52, 80, 83,
84], where a spy CUDA application and a victim CUDA or
graphics application share a GPU. This scenario is feasible
in cloud settings, where multiple tenants can share the same
physical GPU through virtualization [12, 42, 74, 81]. Addi-
tionally, prior research has demonstrated practical techniques
for achieving co-location in cloud systems [4, 67, 85]. The
attacker does not require superuser privileges. Instead, they
perform experiments to reverse engineer the GDDR address
mapping functions that hash physical addresses to GDDR
bank addresses, as a preliminary step for the attacks.

Our attacks can be generalized to other platforms that use
RFM. We expect versions of the attack can be developed for
systems that use other memories. We demonstrate attacks on
Jetson AGX Orin 64GB (LPDDR5) [32], where an attacker
runs on the GPU and spies on CPU applications, without
special support or privileges.
Experimental Platform. We perform evaluations on four
NVIDIA GPUs with GDDR6 memories from the three major
vendors: two GeForce RTX 4060 GPUs with GDDR6 from
Samsung and SK Hynix respectively, one GeForce RTX 3080
with GDDR6 from Micron, and one GeForce RTX 3070 Ti
with GDDR6 also from Micron.

3 Attack Overview and Challenges

In this work, we present three types of end-to-end attacks:
covert and side channels, and a slow-down attack.
Research challenges. Successfully carrying out these attacks
requires us to solve four challenges: (1) Since the attacker
does not know the virtual to physical address mapping, we
need to uncover or control the virtual to physical address map-
ping; we describe how to get physical addresses for a given
virtual address with a root privilege for reverse engineering



and a method to control physical memory allocation when
there is no root privilege for the attacks; (2) How to efficiently
bypass the complex GPU cache hierarchy such that we can
generate memory accesses that reach the DRAM chips; (3)
Identifying which physical addresses map to the same bank
to cause or measure contention: this requires us to understand
the mapping between physical memory addresses and the
DRAM banks; (4) Understanding the RFM leakage behavior,
RFM sub-bank partition to locate addresses and distinguish
this leakage from row buffer contention. The side channel
attacks and slow-down attacks, share similar requirements in
terms of deriving address groups that map to different banks.
We discuss these four challenges and how we overcome them
in the remainder of this section.

3.1 Virtual-to-Physical Address Translation

In this section, we first show how to obtain a physical address
corresponding to a virtual address in a user application with
a root privilege. Then using this information, we provide a
method to deterministically allocate physical pages when the
application does not have root privilege.

Obtaining physical address. We reverse engineer the phys-
ical memory allocation in order to enable the attacker to
control their physical memory allocation. We instrument the
Unified Virtual Memory (UVM) module in the open-source
NVIDIA driver to collect virtual to physical mappings to re-
verse engineer the allocation process [21]. When a process is
using Unified Virtual Memory, the cudaMallocManaged()
API first allocates memory on the CPU side (similar to
malloc). Once this memory is accessed by the GPU, a page
fault occurs and at this time, the allocation in the GPU global
memory is performed. CUDA also supports asynchronous
prefetch of data from system memory to device memory us-
ing cudaMemPrefetchAsync(). This call allocates memory
matching the prefetch size on the GPU memory, registering a
physical space of 2MB to the requested process. We discover
that block_gpu_pte_write_2m method implemented inside
the UVM driver registers the physical page.

We instrument the driver to track the physical memory allo-
cation events and discover that physical memory allocation is
sequential. Moreover, we confirm that using cudaMalloc()
(an alternative to cudaMalloManaged() to allocate memory
when UVM is not used), the allocation happens with a granu-
larity of 2MB, aligned at a 2MB boundary as well even when
the allocation request is smaller than this size. GPUs (as well
as CPUs) often use an optimization called coalescing TLBs
to expand the reach of the TLB structures [66]. The 2MB con-
secutive allocation promotes TLB coalescing, allowing these
consecutive pages to share a single TLB entry. Allocation is
also consecutive for allocation sizes larger than 2MB.

ERROR

Figure 3: Deterministic physical allocation in RTX 4060.

Observation 1: Allocations in GPU global memory
happen in 2MB pages. The first free 2MB space (2MB-
aligned) is assigned to the requesting process, that is,
allocations happen in logically sequential order.

The consecutive allocation of 2MB chunks simplifies the
virtual to physical mapping component of the attack in the
following way: the groups of addresses that we derive to hash
into the same bank from a consecutively allocated region con-
tinue to hash together to the same bank even when mapped to
a different physical location, or even when used by a different
program. The address hashing patterns are preserved given
that these pages are consecutive in physical memory. We veri-
fied this observation empirically; thus, we can derive groups
of addresses for each bank and continue to use them regard-
less of the virtual to physical mapping; groups of addresses
continue to hash to the same bank, even though the bank may
change for different virtual to physical mappings.
Forcing deterministic allocation. We already pointed out
how to obtain a physical address from the driver. However,
without root privilege, we can neither modify the driver nor
access the kernel log messages. The attacker processes (trojan
and spy) need to know the physical address to select the
correct set of addresses for a successful attack (especially, a
covert channel).

Since it is hard to derive the virtual-to-physical mapping,
we offer a generic method for controlling the physical alloca-
tion. Using Observation 1, we realize that we can force our
process to allocate a specific part of memory: GPU giving
contiguous memory allocations enables us to build a determin-
istic allocator. We first show this across different processes.
As visualized in Figure 3, if the whole memory is occupied
by the first process, then the second process gets an ER-
ROR on any allocation. Only if the first process does not
allocate the last 49 pages, the second application can success-
fully launch and allocate memory. The reason behind this
observation is that 48 pages (each 2MB) corresponding to
96MB is required to launch the process, then the required
2MB page is allocated. As the first process does not allocate



Algorithm 1 Obtaining Last Page (2MB)
1: vector < uint32_t∗> Pages;
2: uint32_t ∗Last_2MB_page;
3: while True do
4: uint32_t ∗ temp;
5: err = cudaMalloc((void ∗∗)&temp,2MB);
6: if err ̸= cudaSuccess then
7: break;
8: end if
9: Pages.push_back(temp);

10: end while
11: N← Pages.size();
12: for i← 0 to N−1 do
13: cudaFree(Pages[i]);
14: end for
15: Last_2MB_page = Pages[N−1];

the last physical pages, the second process obtains the last
page (e.g., PA=0x1e5000000) first. We use this behavior to
propose a method to allocate the last available page. Since
the GPU allocates starting from the lower pages, we know
for sure that the last pages are available. Algorithm 1 shows
how to utilize this observation in a single application. The
process continuously allocates all physical pages available on
global memory, then releases the prior pages and only keeps
the last page. This knowledge is especially crucial in covert
channels where, before communication starts, the sender and
receiver should agree upon a bank. Note that the physical
addresses (e.g., PA=0x1e5000000) on the plot are stable, i.e.
the last pages do not change and they correspond to the avail-
able global memory. With the physical pages not changing
over time, the attacks become stable. Moreover, this gives the
attacker another opportunity that they do not need to rely on
reverse engineering results. An attacker can easily find ad-
dress pairs for the last page(s) and launch her attacks without
knowing the physical address.

3.2 Bypassing GPU Caches

Bypassing L1 cache. A preliminary challenge is to bypass
the complex GPU cache hierarchy such that memory accesses
reach DRAM, rather than be served through the caches. For
global memory (as opposed to private memory), GPUs bypass
the use of the L1 cache to avoid coherence issues where shared
global data is accessed and modified in L1 caches of different
GPU SM cores [14]; even on GPU systems that cache global
memory accesses in L1 cache, this can be disabled using a
compiler option 1.
Bypassing L2 cache. We also bypass L2 cache accesses us-
ing the discard instruction for all of our attacks. NVIDIA
introduced this new PTX instruction in PTX 7.4 [56] to in-
validate data in the L2 cache. The discard instruction gets
an address at an alignment of 128 bytes, matching the cache
line granularity, and invalidates the data in that cache block

1Compiler option "-Xptxas -dlcm=cg" bypasses the L1 cache.

in the L2 cache. The discard instruction is only supported
on Ampere and Ada architectures.

In the absence of discard, it is still possible to do the re-
verse engineering (and, in principle, the attacks although we
do not present complete end to end attacks). Reverse engineer-
ing on earlier GPUs without discard can use an eviction based
approach to bypass the caches.We did not invest in deriving
eviction sets, but instead periodically flush the cache (i.e.,
evict all sets) since we are able to do so efficiently. Specifi-
cally, to flush the L2 cache, we linearly access a buffer at a
32-byte stride that is equal to or larger than the size of the
L2 cache [21]. To reduce the cache eviction time, we par-
allelize the accesses using parallel threads.Flushing the L2
cache remains a costly operation and we increase the num-
ber of memory operations between flushing in the following
ways. The NVIDIA GPU caches are sectored [15, 76], with
each cache line partitioned into four 32-byte sectors. When
a thread accesses any 32 bytes within a cache block, only
those 32 bytes get cached in the L2 cache. Consequently, for a
given cache block, we can generate 4 different accesses, each
for one sector, without discarding or flushing the cache line.
Furthermore, since the row buffer operates at the page granu-
larity, we can use many cache blocks within the same page to
access the same row without having to flush the already-used
addresses. We note that during cache flushing, accesses to
the four sectors within the same cache line are coalesced by
the GPU into a single memory operation; coalescing does
not occur during the attack since we use a single thread to
access the different sectors. These two optimizations together,
substantially reduce the number of times we need to flush the
cache, without harming the cache flush time, improving the
bandwidth on GPUs that do not support discard.

3.3 DRAM Bank Address Translation

Having bypassed the caches, the next challenge is to identify
how different physical addresses are mapped to DRAM banks
to enable the identification of addresses that reach the same
bank. Knowledge of address mapping enables the attacker to
efficiently generate bank-specific addresses. We use a timing
side channel that relies on the observation that when two
addresses map to the same bank, they cause the row buffer
for the first accesses to be closed before the timeout value;
when we access the row again, we will experience a higher
access time needed to reactivate that row. We then use groups
of addresses that map to the same bank to derive the hashing
functions that map addresses to banks. Our approach learns
from prior works to find physical address to bank mapping
in the context of DDR [5, 19, 65], but these works are not
directly usable due to important differences in how GDDR is
structured.
Identifying addresses mapping to the same bank. We use a
timing side channel that exploits the difference between row
buffer hit and conflict (explained in § 2) to identify addresses



Figure 4: Access times distribution on RTX 4060.

that share the same bank. Specifically, pairs of addresses tar-
geting the same bank will have higher latency when issued
in alternating patterns due to row buffer conflicts. The experi-
ment to identify whether two addresses share the same bank
alternates accesses repeatedly and then takes the minimum
access time to eliminate the noise in the measurement. If
this time exceeds a threshold, we identify the addresses as
mapping to the same bank.

In our experiments, we allocate global memory on the GPU
and select the addresses to group from this allocation. The
address-hashing functions, which determine the bank each
address resides in, may utilize any of the bits in the physical
address. Thus, we ensure that we have addresses across the
range of the physical address space. By repeating this experi-
ment for large numbers of addresses, we identify groups of
addresses that each map to the same bank.
Deriving address mapping hash functions. The memory
controller uses address-hashing functions to map physical ad-
dresses to chip/bank/channel/row/column (channel in the case
of GDDR6). These addresses are constructed to try to dis-
tribute the memory pages to banks in a way that reduces bank
contention. We assume the functions use linear XOR opera-
tions of selected bits of the address, as is typical with address
and index hashing functions [5]. After grouping addresses
into banks using the timing side channel, we use an open
source tool [65] to reconstruct the address hashing functions;
the tool derives functions using different bit combinations
that explain the mapping of the addresses recovered from
the timing analysis for each group of addresses that shares a
common bank.

To find out the cache blocks in the same row, we perform
two experiments. In the first experiment, we compare the
first block with all other blocks in 2MB space. This gives us
the locations of cache blocks that have row buffer conflicts
with the first block. However, this experiment would not yield
the addresses that are in the same row as the first block. In
the second experiment, we take an address that caused row
buffer conflict with the first block in the first experiment and
compare that address against all other blocks in the 2MB
memory space. Based on the address patterns, we observe that
each 1KB memory is divided into 2 parts: cache blocks 0-1-4-
5 and cache blocks 2-3-6-7 are in the same row respectively.

We conjecture that this structure is due to the independent
channel configuration of GDDR6. We also tested a GPU
with GDDR5 memory where each 1KB segment stayed in
the same row since GDDR5 does not possess channels. This
channel configuration doubles the number of banks while
decreasing the row size of a physical bank. This (see Figure 1)
behavior becomes clear when we group the addresses and
get twice the number of banks as presented in the GDDR6
datasheets [45]. A histogram of the memory access latency is
shown in Figure 4, where we can clearly observe the higher
times due to row-buffer conflicts.

Observation 2: If the 2MB page is divided into 1KB
pieces, cache blocks 0, 1, 4, and 5 map to the same
row. Cache blocks 2, 3, 6, and 7 map to another row.
This sub-page granularity arises due to the use of
independent channels in GDDR6 memory modules.

We use Observation 2 when grouping the addresses into
banks. Since a 1KB range is in the same physical bank (but
different channels inside the bank), we can ignore the channel
function and work on only 1KB pieces. Once we find out the
address mapping functions for chips/banks, in the next phase
we can identify the channel address mapping function which
decides which 4 cache blocks map into which channel.
Reverse engineering results. GPU address translation uses
complex XOR functions, that is, the masked bits are not lim-
ited to some parts of the physical address, rather they use sev-
eral different bits to distribute addresses into physical banks.
The reversed engineered functions are shown in Figure 9. We
do not label the functions as the timing side channel does not
provide information related to chips or banks. It only differ-
entiates groups of addresses in the same bank. The channel
function can be directly identified once the bank is identified.

3.4 Characterizing RFM Leakage

We conduct experiments to understand the RFM behavior
observable from user applications (CUDA Kernels running on
the GPU), as well as the granularity of the sharing of the RFM
counters. The experiments compare three different cases: (a)
when there is no contention; (b) when there is row buffer
contention; and (c) when RFM is triggered. This experiment
is important to see how a malicious process can trigger RFM
blocking, or on the other hand, observe and characterize RFM-
related delays in memory accesses. The leakage differs from
prior row buffer-based attack (DRAMA) [65], which relies on
row buffer contention or sharing. The figure also highlights
some of the unique features of RFM leakage where accesses
to addresses corresponding to the same RFM region (the
region having the same RFM activation counter) increase
their shared counters and cause delays through refresh or
blocking when access thresholds are reached.



Figure 5: Different scenarios of contention comparisons: (a) refers to the scenario where the observer sees no contention; (b)
refers to the case where the observer sees fluctuating row buffer contention; (c) refers to the case where the observer experiences
RFM blocking. The x-axis refers to the access time (clock cycle) for kernel A. The y-axis shows the measurement sample.

Three cases share the same experiment setup with different
address comparisons. The experiment setup consists of two
CUDA kernels (A and B), each running only a single thread,
to simplify address mapping. Kernel B accesses a given global
memory address repetitively, while Kernel A observes mem-
ory access delays. A accesses its own address (primary ad-
dress) and measures the time for this access to finish, while B
accesses its address in different places in memory (secondary
addresses), chosen to trigger different RFM and row buffer
contention behavior. Since we already reverse-engineered the
index mapping functions, we are able to select the addresses
to help identify the RFM bank division structure.

Figure 5 illustrates the observed delays under three differ-
ent scenarios where B accesses: (a) a different address in a
different DRAM bank, leading to no contention with the pri-
mary address A; (b) a different row address in the same bank
but in a different sub-bank; and (c) a different row address in
the same bank and sub-bank.
No contention. Figure 5 (a), shows that when the B is ac-
tivating an address in a different bank from A, A observes
no contention. We ignore the spikes in the plot since they
typically correspond to the periodic refreshes. We conclude
that global memory accesses in different RFM sub-banks or
different banks do not cause contention to each other.
Row buffer contention. In Figure 5 (b), we observe fluctuat-
ing contention in the DRAM access time of A while B keeps
activating a row in the same bank, but different RFM sub-
bank. This variability comes from the row buffer conflicts:
contention happens when the memory controller does not yet
close the row buffer after B’s accesses and A’s access conflicts
in the row buffer. The reason for the fluctuation is that in some
cases, the GPU memory controller has already closed the row
buffer, in others, the row buffer is open. This behavior (further
explained in § 12) is due to the timeout interval being small
with respect to high global memory access times. Therefore,
the attacks based on row buffer contention become ineffective
in GPUs.
RFM blocking. Figure 5 (c) shows high DRAM access times
of A while B repeatedly activates a row in the same RFM sub-
bank. We observe similar behavior even when B accesses the

same row A accesses due to RFM blocking. The decreasing
times reflect resuming accesses once blocking stops due to
decreasing counter values after refresh. We conclude that
the RFM timing side channel is different from row buffer
contention in the following ways: RFM leakage introduces a
substantial increases in access time; RFM leakage can also
occur across the same row.

Observation 3: In NVIDIA RFM design, the DRAM
banks are divided into sub-banks, each sub-bank hav-
ing a different set of RFM counters. RFM has a com-
pletely different leakage than row buffer timing chan-
nel: Row buffer contention is incremental for a single
access time while RFM increases an access time sev-
eral times and RFM leakage can occur across the
same row.

The experiment demonstrates that addresses within the
same RFM sub-bank as the primary address induce specific
contention, which we refer to as RFM leakage. We can set a
threshold and compare different addresses to obtain address
pairs that cause RFM contention, hence understanding how
RFM divides banks into sub-banks. For example, if we try
to group cache blocks in the same bank into RFM groups
on RTX 4060, we get 3 distinct ones. This highlights that
the bank is divided into 3 sub-banks, each sub-bank having a
different RFM activation tracker counter. In RTX 3070 Ti and
3080, we observe a bank is divided into 2 sub-banks. This
design of the RFM mechanism is similar to AMD’s Refresh
Management for DRAM Memory Controller patent [34]. We
designed an experiment to measure how long the blocking
delays could be observed after blocking is triggered. The ex-
periment uses a thread to access a memory bank until blocking
is triggered. The other thread samples DRAM access time as
in Figure 5. The experiment delays the start of sampling to
see how long the blocking behavior is observable: we find that
it is no longer observable after 3 microseconds. This makes it
difficult to detect blocking after a kernel switch.



4 Covert Channel Attack

In this section, we exploit the findings in § 3 to build a fast and
resilient covert channel. We begin by illustrating the design
of the covert channel and the synchronization mechanism,
followed by our evaluation results.

4.1 Covert Channel Design
In the § 3.4, we observe that if a specific memory region or
sub-bank receives row activations, the counter corresponding
to that region increases and the RFM mechanism takes the ac-
tions according to the activation counter. The communication
channel based on RFM leakage uses the ability of sender and
receiver processes to control the number of activations sent
to DRAM and measure the access time to specific addresses
in DRAM. The receiver senses delayed accesses to its ad-
dress when the sender accesses alternating rows to increase
the number of activations in the memory region. Conversely,
when the sender is inactive, the receiver experiences a normal
global memory access time.
Covert channel synchronization. Synchronization between
the sender and receiver processes in a covert channel is cru-
cial for controlling bandwidth and minimizing the number
of erroneous bits. We utilize 3-phase synchronization in our
covert channel. First, the sender signals the receiver with a
pre-agreed pattern of data 2, indicating the sender’s readiness
to start communication. In the second phase, the receiver re-
sponds with pre-agreed data to signal its readiness to receive.
Once the sender gets this signal, the handshake is complete.
The sender starts to transfer the bits to the receiver. To further
reduce the error rate, the sender attaches the pre-agreed data
pattern at the start of the message, allowing the receiver to
easily identify the beginning of the message.

The receiver and sender kernels are located in two host pro-
cesses. To successfully build the covert channel between the
two processes, they should execute concurrently on the GPU.
With the help of Multi-Process Service (MPS) [61], multiple
CUDA kernels can execute in parallel, sharing GPU resources.
Multi-process execution minimizes the overhead from GPU
context switching and boosts performance, especially when
a single process does not fully exploit the GPU’s capacity.
Our covert channel is based on timing leakage from RFM in
DRAM. We utilize MPS to support parallel execution.
Deterministic physical allocation. Implementing this covert
channel poses several challenges. Firstly, the address spaces
for the sender and receiver processes are different, and neither
party is aware of the other’s address space. Additionally, the
user can only see the virtual addresses and lacks virtual-to-
physical address mappings. To overcome these challenges,
we use Algorithm 1 for a deterministic physical allocation.
Algorithm 1 continuously allocates 2MB pages on the GPU

2The pre-agreed data pattern is long series of continuous highs followed
by a small sequence of continuous lows.

Algorithm 2 Receiver for Covert Channel
1: // Samplesreceiver[N] is an array of N samples to record the access times
2: // T is the threshold to differentiate bits ’1’ and ’0’
3: // H is the number of consecutive highs to form a 1
4: // L is the number of consecutive lows to form a 0
5: Synchronization();
6: for i← 0 to N do
7: start← clock();
8: ∗ReceiverRow;
9: end← clock();

10: Samplesreceiver[i] = end− start;
11: discard(ReceiverRow);
12: // Check for the end of communication pattern
13: end for
14: // Using T, H and L decode samples into message bits

until running out of available memory. When the covert chan-
nel starts, the receiver uses the Algorithm 1 to keep allocating
2MB pages sequentially until the GPU’s memory is exhausted.
This ensures the receiver process secures the last available
2MB page in the physical address space. After that, the sender
process begins its memory allocation, obtaining the 2MB page
immediately ahead of the receiver’s page. Recall that the GPU
allocates memory sequentially (Observation 2 in section 3.1):
we use algorithm 1 to allocate the last physical page to the
the receiver and then the page before that to the sender. As a
result, the processes obtain known physical addresses allow-
ing communication on pre-agreed set of banks. We note that
this is not essential since the active banks could alternatively
be probed to establish initial synchronization.
Designs for sender and receiver. Algorithm 2 and Algo-
rithm 3 show the design of the receiver and sender, respec-
tively. The receiver, once the synchronization has been com-
pleted, starts measuring the access time to its global address.
The receiver starts decoding the collected samplings into bit
representation once the receiver receives the ‘end’ character,
a data pattern representing the end of the communication.
The receiver checks for this pattern every time in the itera-
tion. Once the receiver observes this pattern in the message,
it finishes receiving, and then decode the message. We define
different duty cycles for bits ‘1’ and ‘0’, namely H and L in
Algorithm 2. In the sender process, we observe that activating
4 rows (∗row0,∗row1,∗row2,∗row3) is sufficient to cause
considerable timing difference for the receiver to differenti-
ate between high and low. Both sender and the receiver uses
discard instruction to bypass L2 cache. The access pattern of
the sender corresponds to a many-sided Rowhammer attack.

4.2 Covert Channel Evaluation
We follow the process described in § 3.4 to find address pairs
that reside within the same RFM sub-bank. The receiver
requires 1 row (∗ReceiverRow), while the sender needs 4
rows (∗row0,∗row1,∗row2,∗row3). The level of high is de-
termined by the number of activations (R in Algorithm 3) in
the sender code and the duty cycle of low bit is determined by



Algorithm 3 Sender for Covert Channel
1: // Messagesender[N] is an array of N bits used to send a message
2: // R is the number of iterations to send the ACT command
3: // K is the number of clock cycles to stay idle
4: Synchronization();
5: for i← 0 to N do
6: if Dsender[i] == 1 then
7: for i← 0 to R do
8: *row0; *row1; *row2; *row3;
9: discard(row0); discard(row1);

10: discard(row2); discard(row3);
11: end for
12: else
13: start← clock();
14: end← start;
15: while end - start < K do
16: end← clock();
17: end while
18: end if
19: end for

the idle time (K in Algorithm 3). The error rate is determined
using the Levenshtein edit distance [46]. For evaluation, the
sender sends a message composed of 10000 bits. The mes-
sage is made up of a randomly generated sequence of equal
numbers of ‘1’ and ‘0’ bits.
Results. We implement the covert channel on GeForce RTX
3080, 3070 Ti, and two 4060 GPUs from different vendors.
We evaluate the performance of the covert channels using two
metrics: bandwidth and error rate. As shown in Table 1, the
covert channel achieves a bandwidth of up to 55 KBps with
an error rate of 0.68% on an RTX 4060 GPU equipped with
GDDR6 from SK Hynix. On the RTX 3070 Ti, the covert
channel’s bandwidth and error rate change to 44.1 KBps and
0.98%, respectively.

Table 1: Covert channel: Bandwidth (KBps)/Error rate(%).
Bandwidth Error rate

RTX 4060 8GB (SK Hynix) 55.0 0.68
RTX 4060 8GB (Samsung) 52.7 0.75
RTX 3080 12GB (Micron) 50.8 0.03
RTX 3070 Ti 8GB (Micron) 44.1 0.98

Evaluation on RTX 3080. We specifically evaluate the covert
channel bandwidth and error rate on the GeForce RTX 3080
12GB. The evaluation is done by varying the duty cycle of low
bit. As presented in Figure 6, the bandwidth is lowest at clock
cycle 4000 and the error rate is also low. This is because the
duty cycle is stable. Towards clock cycle 3500 the error rate
increases due to decrease in the duty cycle. The duty cycle
becomes unstable at 3500 and decreases by 1 stabilizing at
2900. At clock cycle 2900, the channel has the best perfor-
mance with an error rate of 0.03% and bandwidth of 50.8
KBps. Then as the duty cycle decreases more, the channel
destabilizes, and both bandwidth and error rate increase.
Parallelization of covert channel. Since different pairs of
addresses cause RFM contention to each other. We utilize

Figure 6: Covert channel evaluation on GeForce RTX 3080.

independent sets of pairs to further increase the bandwidth
of the channel. The GPU architecture offers flexible paral-
lelization for CUDA applications. For example, the RTX 4060
GPU has 24 streaming multiprocessors (SMs), with each SM
containing multiple warp schedulers. Each warp scheduler
can schedule a warp (32-thread) at a time with a specific
scheduling policy. CUDA interface allows the developer to
run CUDA kernels on different SMs by launching different
thread blocks. An example of this is <<< 2,32 >>>, which
launches 2 different blocks of 32 threads (a warp) on dis-
tinct SMs, allowing for parallel execution. Using this method,
we implement the receiver and sender with 2 thread blocks
each, resulting in a total of 4 thread blocks running concur-
rently. This approach doubles the bandwidth to 110 KBps on
RTX 4060 with SK Hynix GDDR. However, this increased
bandwidth comes with a higher error rate, which rises to 5%.

5 Side Channel Attack

In this section, we utilize the leakage vectors identified in
§ 3.4 to develop two side-channel attacks: an application fin-
gerprinting attack on CUDA applications and a 3D rendering
fingerprinting attack on graphic workloads.

We assume a scenario where a spy application operates in
the background, persistently monitoring RFM leakage. The
spy uses discard instruction to bypass the L2 cache. Mean-
while, a victim user conducts various activities on the shared
GPU. Analyzing the traces of GDDR memory footprints al-
lows us to correlate them with the victim’s actions and infer
secrets about the applications in use. We assume the shared
GPU enables Multi-Process Service (MPS) [61].

5.1 Attack 1: Application Fingerprinting

In this attack, we demonstrate that an attacker can infer spe-
cific CUDA applications by exploiting RFM leakages. We
use 20 CUDA applications from the Rodinia benchmark [8]
and NVIDIA CUDA samples [60] as the victim. Rodinia is
a benchmark suite designed for heterogeneous computing,
targeting both CPUs and GPUs. Table 6 lists 20 CUDA appli-
cations across various domains.



(a) Reduction (CUDA samples [60]). (b) bf16TensorCoreGemm. (c) Srad (from Rodinia benchmark [8]).

(d) Character 1 (Blender Studio [11]). (e) Blender character 2. (f) Blender character 3.

Figure 7: Memorygrams show distinct patterns (y-axis shows time for 64 banks of RTX 4060 over time x-axis).

Experimental setup and data collection. We profile GDDR
memory footprint traces of a CUDA-based spy while the vic-
tim runs CUDA applications from the selected applications.
For each application, we gather 100 trace samples. In each
sample, the spy application runs 8 blocks of CUDA kernels,
and within each kernel, 8 banks are profiled sequentially, re-
sulting in a total of 64 GDDR banks being profiled. Between
each sampling, there is a delay of approximately 100 ns, let-
ting the spy have a raw sampling rate of ~300,000 samples
per second. The spy application collects 3 million data points
for each bank. However, since this number of data points is
too large for the memorygrams to capture distinguishable pat-
terns, we limit the spy to only saving 200,000 data points. We
observe that this number is sufficient to reveal the patterns.

Observing memorygram distinguishability. Fig. 7(a)- 7(c)
shows the traces of RFM leakages from 64 banks of an RTX
4060 GPU when three different selected applications (Reduc-
tion, bf16TensorCoreGemm and srad benchmarks) are exe-
cuted. The data samples of RFM timing measurements are nor-
malized from 0 to 1. Following established parlance [63, 70],
we refer to these traces as memorygrams. By observing the
memorygrams of three applications, we can easily distinguish
these applications.

Classification and results. Since we have 20 applications,
our dataset consists of 2,000 memorygrams. To classify these
memorygrams into specific applications, we use the CNN
model ResNet-152 [18] with pre-trained weights. Because
our memorygrams are grayscale images, we customize the
first layer of ResNet-152 to have a single input channel instead
of three. Additionally, the last layer is modified to output 20
classes. We resize the memorygrams to 224 by 224 pixels and
train the model using PyTorch [64] version 2.1.2, employing
a 10-fold cross-validation method [40]. For each fold, we
compute three performance metrics: F1 score (F1), Precision
(Prec), and Recall (Rec). In our training setup, we utilize the

CrossEntropyLoss function as our criterion to handle multi-
class classification tasks. For optimization, we employ the
Adam optimizer with a learning rate of 0.0001 and a weight
decay of 1e-5. Table 2 presents the average and standard
deviation across the 10 folds for 4 experimental machines.
For RTX 4060 GPUs, our attacks achieve F1 scores of over
94% and 93% for two GDDR6 manufacturers: Samsung and
SK Hynix, respectively. For RTX 30 series, we can correctly
fingerprint the victim’s application with F1 scores of 88.6%
for the RTX 3080 and 95.4% for the RTX 3070 Ti GPU.

5.2 Attack 2: 3D Rendering Fingerprinting
We follow up the application fingerprinting attack with a
proof-of-concept demonstration showing that a spy can steal
3D graphic content rendered by the victim by sniffing RFM
leakage. First, we introduce the background of 3D rendering
on GPUs. Then, we illustrate our attack methods and present
evaluation results.
3D rendering on GPU. 3D rendering transforms a 3D scene
into a photorealistic 2D image, an intensive process that relies
heavily on GPUs for speed, especially with large scenes [22].
This study focuses on Blender [10], an open-source toolkit
for rendering images from 3D scenes. Blender’s rendering
process involves five main steps: scene loading, ray casting,
path tracing, shading, and output. First, Blender loads the 3D

Table 2: Application fingerprint performance: F1 (%), Preci-
sion (%), and Recall (%).

F1 Prec Rec
µ(σ) µ(σ) µ(σ)

RTX 4060 8GB (Samsung) 94.4 (7.4) 95.3 (6.7) 94.9 (6.4)
RTX 4060 8GB (SK Hynix) 93.7 (4.8) 95.6 (3.3) 94.0 (4.3)
RTX 3080 12GB (Micron) 88.6 (8.5) 90.5 (8.0) 89.0 (8.1)
RTX 3070 Ti 8GB (Micron) 95.4 (4.5) 96.2(4.0) 95.7 (3.9)



Table 3: 3D rendering fingerprint performance: F1 (%), Preci-
sion (%), and Recall (%).

F1 Prec Rec
µ(σ) µ(σ) µ(σ)

RTX 4060 8GB (Samsung) 96.0 (5.4) 97.1 (4.0) 96.4 (4.9)
RTX 4060 8GB (SK Hynix) 98.3 (2.4) 98.9 (1.6) 98.4 (2.4)
RTX 3080 12GB (Micron) 96.7 (4.2) 97.4 (3.5) 97.0 (3.8)
RTX 3070 Ti 8GB (Micron) 94.3 (5.5) 95.1 (5.0) 94.8 (5.0)

models and all parameter settings into GPU memory. The
GPU then handles a vast number of calculations for ray cast-
ing, path tracing, and shading. For ray tracing acceleration,
Blender uses a Bounding Volume Hierarchy (BVH) supported
by NVIDIA GPUs [2]. After the GPU completes all computa-
tions, the rendered 2D images are returned to the host CPU.
Observing 3D character distinguishability. We observe that
different 3D characters rendering introduces different delays
on the GPU’s GDDR which the memorygram can capture.
Fig. 7(d)- 7(f) show the memorygrams of RFM leakages when
three different Blender characters are rendered on an RTX
4060, respectively.
Experimental setup and data collection. Similar to our pre-
vious attack, we collect RFM leakage via a CUDA-based spy
program while the victim renders 3D graphic workloads in
Blender. The spy application collects 1 million data points
for each bank. Since the blender takes longer time than the
applications, we increase the delay between measurements
to ~30 µs downgrading the raw sampling rate to ~30,000
samples per second. For the victim 3D characters, we choose
forty 3D characters from the Blender Studio open movies [11].
Each character is rendered with the same parameter settings,
including the exact same background scene, camera angle,
and rendering resolution. We test on Blender version 4.2.0.
For each character, we collect 50 memorygrams, generating a
dataset of 2,000 memorygrams in total.
Classification and results. We use a pre-trained ResNet-152
model [18], customizing the first layer to have a single input
channel and modifying the output layer to handle 40 classes.
During the training stage, we use the CrossEntropyLoss func-
tion as the criterion and the Adam optimizer with a learning
rate of 0.0001 and a weight decay of 1e-5. Table 3 presents
the performance of 3D rendering fingerprint attacks, includ-
ing the average and standard deviation across 10 folds. For
NVIDIA RTX 4060 GPUs, we achieve F1 scores of over 96%
and 98% for GDDR6 memory from Samsung and SK Hynix,
respectively. The average F1, precision, and recall scores for
the RTX 3080 are 96.7%, 97.4%, and 97.0%, respectively. For
the RTX 3070 Ti, we obtain average F1, precision, and recall
scores of 94.3%, 95.1%, and 94.8%, respectively.
Effect of bank order: Tthe classifier for the side channel
attacks is robust to the bank order, and is able to fingerprint
accurately over different runs of the victim where the victim’s
physical memory allocation is likely to be different. We be-

lieve that this is due to the virtual to physical mapping over
the 2MB pages causing shifts of the banks but preserving their
relationship to other banks (an effect observed by prior GPU
side channel studies [13]). This causes a shift in the patterns,
but preserves them, enabling accurate classification.

6 GPU-to-CPU Attacks on LPDDR5

Modern Systems-on-Chip (SoC) devices are used in mobile
devices and embedded systems to provide high-performance
energy-efficient computational support. In an SoC, it is com-
mon for various modules (CPU, GPU, and accelerators) to
share a memory system. For instance, the NVIDIA Jetson
AGX Orin integrates an ARM Cortex-A78 CPU, an NVIDIA
Ampere GPU, and a Deep Learning accelerator, all of which
share an LPDDR5 memory [32]. Because the memory is
shared, memory access patterns from one SoC module can
be captured by an attacker residing on another. We confirmed
that RFM leakage is also present on LPDDR5 memory (See
Figure 12, similar to Figure 5(c)).

In this section, we demonstrate that it is indeed possible
for a spy residing on the GPU to capture memory footprints
originating from applications running on the CPU on the
NVIDIA Jetson SoC, using RFM-based leakage. Specifically,
we conduct three side-channel attacks: an application finger-
printing attack, a website fingerprinting attack, and a video
fingerprinting attack. In all these attacks, the victim process
runs on the CPU, accessing system memory shared between
the GPU and CPU, while the spy process accesses memory
to detect RFM leakage.
Attack 3: CPU Application Fingerprinting: We select 25
benchmarks from the SPEC2017 Benchmarks [72], that we
were able to build and run successfully on the Jetson’s CPU.
During the attack, the spy selects 1024 cache lines and ac-
cesses them while bypassing the GPU caches. The cache lines
are selected based on fixed offsets within an allocated 2MB
page selected to sample different memory banks. The attacker
measures the access times for each bank and adds them up for
each sampling period (this makes the signal independent of
the bank order) and tracks these values over time. We illustrate
some of the collected application traces in Fig. 8(a)- 8(c).

For the classifier, we use a sliding window with a win-
dow size of 5,000 and a stride of 1,000 to compute the 12
statistical features (Table 5). We use the features to train clas-
sification models: XGBoost [9] with the following parameter
settings: n_estimators = 100, max_depth = 6, and Light Gra-
dient Boosting Machine (LightGBM) [33] with the following
parameter settings: n_estimators = 100, max_depth = −1,
and num_leaves = 31. We use the 10-fold cross-validation
method to avoid overfitting. LightGBM achieves the high-
est F1 score (93.5%), precision (94.1%), and recall (96.7%),
outperforming XGBoost in all metrics (Table 4).
Attack 4: Website Fingerprinting: For this attack, the spy
process selects 64 banks to monitor. The attacker collects 200



(a) cactuBSSN_r_507 [72] (b) fotonik3d_r_549 (c) bwaves_s_603

Figure 8: RFM signal for three applications (y-axis is sum of all bank access times) over time (x-axis).

Table 4: CPU Application, website and video fingerprinting
performance: F1 (%), Precision (%), and Recall (%).

F1 Prec Rec
µ(σ) µ(σ) µ(σ)

Attack 3 XGBoost 92.5 (1.3) 93.0 (1.2) 92.7 (1.5)
LightGBM 93.5 (1.3) 94.1 (1.2) 93.7 (1.4)

Attack 4 XGBoost 89.9 (1.2) 90.5 (1.1) 90.5 (1.1)
LightGBM 92.1 (1.3) 92.6 (1.3) 92.6 (1.3)

Attack 5 XGBoost 84.9 (1.8) 85.3 (2.0) 86.0 (1.7)
LightGBM 87.6 (1.8) 88.1 (1.7) 88.3 (2.0)

traces for each web page accessed using Chromium 131. We
select the top 50 websites from the Alexa top 1 million list [3].
Fig. 10(a)- 10(c) illustrate the sum of all bank access times
on the Jetson’s LPDDR5 when 3 websites (linkedin.com,
facebook.com, and taobao.com) are browsed by the victim
user. Using a similar classification methodology as Attack
3, Table 4 shows the performance of 50-class website finger-
printing. LightGBM achieves the highest F1 score (92.1%),
precision (92.6%), and recall (92.6%).
Attack 5: Video Fingerprinting: For this attack, the spy
process selects 16 banks. This attack is similar to website fin-
gerprinting, but the victim plays different YouTube videos. We
chose 20 random videos (mostly documentaries) for finger-
printing and classification. The attacker collects 100 traces for
each video, with each trace comprising 300,000 data points.
Fig. 10(d)- 10(f) illustrate the sum of all bank access times
on the Jetson’s LPDDR5 for three selected videos. Using a
similar classification methodology, Table 4 summarizes the
performance of the 20-class video fingerprinting attack across
10 folds. LightGBM attains an F1 score of 87.6%, precision of
88.1%, and recall of 88.3%, surpassing XGBoost’s respective
scores of 84.9%, 85.3%, and 86.0%.

7 Slow-down Attack

This section describes how an attacker can utilize the RFM
features to slow down another user’s workload sharing the
same memory as the attacker’s process. Such attackers, called
Memory Performance Hog (MPH) in [48], can lead to several
potential harmful outcomes. The slow-down can degrade the
performance of an application, causing them to miss perfor-

mance targets or increasing billing on a cloud systems. It is
difficult to detect MPHs since they do not increase hardware
utilization, unlike attacks on other shared resources.

In § 3.4, we show that by creating excess activations in
DRAM rows and increasing the activation counter, we observe
an increased amount of access time due to RFM command
issuance by the memory controller and RFM blockage of sub-
banks. An attacker, besides the covert and side channel attacks,
can use this behavior to slow down other tenants/processes
running concurrently on the same GPU. From § 3.4, we know
that each bank in GDDR chips is divided into several sub-
banks. The slow-down attacker also using the method in § 3.1,
gets the last physical page for the attack. After the attacker
groups the addresses according to different banks, she selects
different addresses from RFM sub-banks. To ensure that the
attacker only slows down due to RFM, she utilizes a small
number of GPU hardware resources. The attacker after getting
its DRAM addresses, launches the kernel which occupies one
and a half SMs (in total 6 warps amounting to 192 threads).
Each thread is activating a single row in a single sub-bank.

We use Blender benchmark as the victim from Openbench-
marking [62] to show how much slow-down an attacker can
get by activating only a single address in different RFM
sub-banks in each physical bank and this access pattern cor-
responds to single-sided Rowhammer attack. We experiment
this on RTX 4060 with Samsung GDDR6. Normally, without
any attacker to slow down, all parts of this benchmark take
23 minutes [55] to complete in total. However, when the at-
tacker is active along with the victim, the benchmark takes
1 hour and 52 minutes [71] to complete which is over 4.8x
slow-down on average ranging up to 7 times individually.

8 Potential Mitigation

Refresh management is designed to mitigate Rowhammer but
potentially creates exploitable vulnerabilities as we explored.
It is important to find a balance between these goals. We offer
three potential mitigations.
Partitioning. Partitioning provides a security isolation be-
tween users/processes. The RFM counters can be imple-
mented per partition, hence different tenants will not affect
each other. Although this would increase the cost, require



additional hardware modification, and bring in the issue of
how to partition fairly, etc., it is an effective way to provide
security. The partition may include a bank/sub-bank or even
a single chip to be completely devoted to a single tenant.
NVIDIA provides partitioning of GPUs up to several sepa-
rate GPU instances by using Multi-Instance GPU (MIG) [59].
This mechanism allows each user to have a different memory
controller, therefore possibly eliminating the RFM leakage.
However, MIG is supported by a limited number of GPUs
(A30, A100, H100, and H200).
Alternative Rowhammer mitigations. JEDEC introduced
Refresh Management in 2020 and since that time it has been
implemented by different companies. Although it provides a
way to solve the Rowhammer problem, there are other pro-
posals by the researchers without relying on blocking the
access as in RFM. For example, Rubix [68] disrupts the spa-
tial correlation in the line-to-row mapping by using encrypted
addresses for memory access, significantly reducing the oc-
currence of hot rows by 2 to 3 orders of magnitude.

New DDR5 specifications [25] come with a new Rowham-
mer solution called Per-Row Activation Counter (PRAC)
which tracks each row in DRAM banks. Although the specifi-
cation does not give detailed information on how it works, we
believe the attacks described here can be extended to DDR5
systems due to 2 reasons: When a row activation counter
reaches a threshold, victim rows need to be refreshed and
PRAC allows additional time window for the internal refresh
management which is similar to RFM commands; CPUs al-
low (DDR5 systems) sharing of a single row of DRAM bank
and this gives the attacker an opportunity for finer granularity
in timing leakage than what is described in this paper.
System-wide analysis. The attacks rely on system features.
The high number of cache misses and DRAM accesses is
the feature of these attacks, but it can also mean some other
attacks, like Rowhammer, row-buffer attacks, etc. Our attacks
use discard and clock instructions in PTX. As long as the
timing can be measured, the side channel attacks will be
possible. Even if the clock is disabled, the attacker can still
build her own timer [13]. If the discard is disabled, then
eviction sets can be utilized, although the bandwidth and error
rate will probably suffer due to excess accesses of eviction
set elements. As a result, the side channel attack, slow-down
attack, and reverse engineering can still be implemented.

9 Related Work

DRAM timing side channels. Pessl et al. 2016 [65] presented
covert and side channel attacks on the shared row buffer of
DRAM memory modules. DRAMA presented a covert chan-
nel and side-channel attack. The threat model for the covert
channel assumes parties (the receiver and the sender) occupy
different rows in the same DRAM bank. We show that since
the row buffer time-out period is small compared to high mem-
ory access latency, the covert channel becomes challenging

to implement on GDDR memories. The threat model for the
side channel assumes the spy has a different row as well as a
shared row with the victim process. On GeForce devices, as
we observe, it is not possible to share a DRAM row between
two different processes. However, our attacks exploit a com-
pletely different leakage vector on GDDR: RFM contention
leakages (see § 12). DramaQueen [78] proposed a method
to infer access patterns that depend on secret information by
weakening the assumptions in DRAMA [65]. DRAMD [43]
is a variant of the one-row DRAM attack that further enhances
the success rate of side channel attacks on Intel SGX. Jain et
al. [21] proposed Fractional GPUs (FGPUs), a tool that also
discovers DRAM addressing functions on NVIDIA GPUs of
its time. However, this tool is complex and incompatible with
the latest GPU generations, such as Ampere or Ada Lovelace.
Additionally, to obtain the physical address from the driver,
they added a new IOCTL (input-output control) method, but
the new drivers do not support this.
GPU covert and side channel attacks. Naghibijouybari et
al. [51] introduced the first covert channel attacks on GPGPUs
by exploiting the contention in different micro-architectural
resources. Later, Naghibijouybari et al. [52] demonstrated
side channel attacks using the CUDA memory management
APIs and performance counters. Nayak et al. [54] demon-
strated a covert channel exploiting the shared last-level TLBs.
Ahn et al. [1] demonstrated a covert channel based on the
shared, on-chip interconnect channels in GPUs. Wei et al. [80]
used context-switching penalties to deduce details related to
the Deep Neural Network (DNN) model. Dutta et al. [13]
investigated prime-and-probe covert and side channels in re-
mote multi-GPU L2 caches. Later, Zhang et al. [82] presented
covert and side channel attacks based on performance counter
and contention mechanisms in multi-GPU interconnects. Our
work is the first to exploit the GPU off-chip memory micro-
architecture (GDDR) as well as showcase the vulnerability of
commercial Rowhammer protection mechanisms.

10 Concluding Remarks

In this paper, we demonstrated new attacks that use the RFM
standard designed to protect modern memory chips from
Rowhammer attacks. The standard triggers refresh operations
and eventually bank blocking based on shared counters of
accesses at the granularity of the bank or the sub-bank: these
operations lead to detectable timing differences. We demon-
strated that this timing leakage can be used to construct high
bandwidth covert channels and side channels on GDDR6
GPU systems. We also showed that driving banks to the
blocked state can result in a substantial slowdown for other ap-
plications. GDDR systems are not vulnerable to DRAMA [65]
style attacks because the memory controller has a different
page policy, making our attacks the first microarchitectural
memory attack on GDDR systems. We also presented side-
channel attacks on a Jetson platform using LPDDR5, showing



that RFM leakage threatens other DDR systems that use RFM.
Our current attacks are limited in granularity by the row

buffer size (the counters count accesses within a sub-bank
of the row buffer) and the need to reach counter thresholds
where timing leakage is observed when refreshes are triggered
or when blocking occurs. As a result, it is possible to detect
aggregate behavior leading to different levels of access to
different pages mapped to different sub-banks. We believe
that some finer-grained attacks may still be possible provided
that they lead to different page-level access behavior but these
attacks require further reverse engineering and finer-grain
attack strategies, which we hope to explore in future studies.

Acknowledgements

We sincerely thank the anonymous shepherd and reviewers for
their valuable suggestions for this work. This work was par-
tially supported by a Department of Energy CENATE grant,
and National Science Foundation grant CNS-2053383.

References

[1] Jaeguk Ahn, Jiho Kim, Hans Kasan, Leila
Delshadtehrani, Wonjun Song, Ajay Joshi, and
John Kim. Network-on-chip microarchitecture-
based covert channel in gpus. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 565–577, 2021.

[2] Timo Aila and Samuli Laine. Understanding the effi-
ciency of ray traversal on gpus. In Proceedings of the
conference on high performance graphics 2009, pages
145–149, 2009.

[3] Alexa. Top 1M sites (2024). https://www.alexa.co
m/topsites.

[4] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V
Krishnamurthy, Thomas La Porta, Patrick McDaniel,
and Lisa Marvel. Malicious co-residency on the cloud:
Attacks and defense. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, pages 1–9.
IEEE, 2017.

[5] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo,
and Gerardo Pelosi. Software-only reverse engineering
of physical dram mappings for rowhammer attacks. In
2018 IEEE 3rd International Verification and Security
Workshop (IVSW), pages 19–24, 2018.

[6] Matthew Blackmore. A quantitative analysis of memory
controller page policies. Master’s thesis, Portland State
University, 2013.

[7] Oğuzhan Canpolat, A Giray Yağlıkçı, Geraldo F
Oliveira, Ataberk Olgun, Oğuz Ergin, and Onur Mutlu.

Understanding the security benefits and overheads of
emerging industry solutions to dram read disturbance.
arXiv preprint arXiv:2406.19094, 2024.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous comput-
ing. In 2009 IEEE international symposium on workload
characterization (IISWC), pages 44–54. Ieee, 2009.

[9] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable
tree boosting system. In Proc. ACM SIGKDD Conf. on
Knwl. Discov. and Data Min. (KDD), pages 785–794,
2016.

[10] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018.

[11] Blender Online Community. Blender Studio Character
library, 2023.

[12] Khaled M Diab, M Mustafa Rafique, and Mohamed
Hefeeda. Dynamic sharing of gpus in cloud systems. In
2013 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum, pages
947–954. IEEE, 2013.

[13] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun
Gupta, Nael Abu-Ghazaleh, Andres Marquez, and Kevin
Barker. Spy in the gpu-box: Covert and side channel
attacks on multi-gpu systems. In Proceedings of the
50th Annual International Symposium on Computer Ar-
chitecture, pages 1–13, 2023.

[14] NVIDIA Forums. Memory Statistics - Caches. https:
//docs.nvidia.com/gameworks/content/develo
pertools/desktop/analysis/report/cudaexper
iments/kernellevel/memorystatisticscaches.
htm.

[15] NVIDIA Forums. Memory Transactions. https://do
cs.nvidia.com/gameworks/content/developert
ools/desktop/analysis/report/cudaexperimen
ts/sourcelevel/memorytransactions.htm.

[16] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor
Van Der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. Trrespass: Exploiting the many
sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 747–762. IEEE, 2020.

[17] Adam Hastings and Simha Sethumadhavan. Wac: A
new doctrine for hardware security. In Proceedings
of the 4th ACM Workshop on Attacks and Solutions in
Hardware Security, pages 127–136, 2020.

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticscaches.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticscaches.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticscaches.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticscaches.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/memorystatisticscaches.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm


[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[19] Christian Helm, Soramichi Akiyama, and Kenjiro Taura.
Reliable reverse engineering of intel dram addressing
using performance counters. In 2020 28th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS),
pages 1–8, 2020.

[20] Intel. Performance Differences for Open-Page / Close-
Page Policy. https://cdrdv2-public.intel.com/
826015/826015_Perf_Diff_Open_Pg_Rev0-9.pdf,
2024.

[21] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan
Rajkumar. Fractional gpus: Software-based compute
and memory bandwidth reservation for gpus. In 2019
IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 29–41, 2019.

[22] Milan Jaroš, Lubomír Říha, Petr Strakoš, and Matěj
Špet’ko. Gpu accelerated path tracing of massive scenes.
ACM Transactions on Graphics (TOG), 40(2):1–17,
2021.

[23] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 716–
734. IEEE, 2022.

[24] Patrick Jattke, Max Wipfli, Flavien Solt, Michele
Marazzi, Matej Bölcskei, and Kaveh Razavi. Zenham-
mer: Rowhammer attacks on amd zen-based platforms.
In 33rd USENIX Security Symposium (USENIX Security
2024), 2024.

[25] JEDEC. Double Data Rate 5 (DDR5 SDRAM) SDRAM
Standard, Document JESD79-5C.

[26] JEDEC. Graphics Double Data Rate (GDDR6) SGRAM
Standard, Document JESD250D.

[27] JEDEC. High Bandwidth Memory (HBM3) DRAM
Standard, Document JESD238A.

[28] JEDEC. Low Power Double Data Rate 4 (LPDDR4)
Standard, Document JESD209-4E.

[29] JEDEC. Low Power Double Data Rate 5 (LPDDR5)
Standard, Document JESD209-5C.

[30] JEDEC. Near-term DRAM Level Mitigation, Document
JEP300-1, 2021.

[31] JEDEC. System Level Rowhammer Mitigation, Docu-
ment JEP301-1, 2021.

[32] Leela S Karumbunathan. Nvidia jetson agx orin series,
2022.

[33] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems,
30, 2017.

[34] Jing Wang Kevin M. Brandl, Kedarnath Balakrishnan
and Guanhao Shen. Refresh management for dram.
https://patents.google.com/patent/US112226
85B2/en, January 2022.

[35] Mark J. Kilgard and Jeff Bolz. Gpu-accelerated path
rendering. ACM Trans. Graph., 31(6), nov 2012.

[36] Dae-Hyun Kim, Prashant J. Nair, and Moinuddin K.
Qureshi. Architectural support for mitigating row ham-
mering in dram memories. IEEE Computer Architecture
Letters, 14(1):9–12, 2015.

[37] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In
2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 638–651.
IEEE, 2020.

[38] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park,
Wanju Doh, Namhoon Kim, Tae Jun Ham, Jae W. Lee,
and Jung Ho Ahn. Mithril: Cooperative row ham-
mer protection on commodity dram leveraging man-
aged refresh. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 1156–1169, 2022.

[39] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram distur-
bance errors. ACM SIGARCH Computer Architecture
News, 42(3):361–372, 2014.

[40] Ron Kohavi et al. A study of cross-validation and boot-
strap for accuracy estimation and model selection. In
Ijcai, volume 14, pages 1137–1145. Montreal, Canada,
1995.

[41] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong
Kim. Stealing webpages rendered on your browser by
exploiting gpu vulnerabilities. In 2014 IEEE Symposium
on Security and Privacy, pages 19–33. IEEE, 2014.

https://cdrdv2-public.intel.com/826015/826015_Perf_Diff_Open_Pg_Rev0-9.pdf
https://cdrdv2-public.intel.com/826015/826015_Perf_Diff_Open_Pg_Rev0-9.pdf
https://patents.google.com/patent/US11222685B2/en
https://patents.google.com/patent/US11222685B2/en


[42] Teng Li, Vikram K Narayana, Esam El-Araby, and Tarek
El-Ghazawi. Gpu resource sharing and virtualization
on high performance computing systems. In 2011 In-
ternational Conference on Parallel Processing, pages
733–742. IEEE, 2011.

[43] Zhiyuan Lv, Youjian Zhao, Chao Zhang, and Haibin
Li. Dramd: detect advanced dram-based stealthy com-
munication channels with neural networks. In IEEE
INFOCOM 2020-IEEE Conference on Computer Com-
munications, pages 1907–1916. IEEE, 2020.

[44] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh
Razavi. Protrr: Principled yet optimal in-dram target
row refresh. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 735–753. IEEE, 2022.

[45] Micron. GDDR6 SGRAM. https://www.mouser.c
om/datasheet/2/671/mict_s_a0009021659_1-2
290912.pdf?srsltid=AfmBOopCWmIZWGKhUzM747i
QaJ-eXJ-TKUQpQcp_mt0vp7DXNntih6qT, 2016.

[46] Frederic P Miller, Agnes F Vandome, and John McBrew-
ster. Levenshtein distance: Information theory, com-
puter science, string (computer science), string metric,
damerau? levenshtein distance, spell checker, hamming
distance, 2009.

[47] Tergel Molom-Ochir and Rohan Shenoy. Energy and
cost considerations for gpu accelerated ai inference
workloads. In 2021 IEEE MIT Undergraduate Research
Technology Conference (URTC), pages 1–5. IEEE, 2021.

[48] Thomas Moscibroda and Onur Mutlu. Memory perfor-
mance attacks: Denial of memory service in Multi-Core
systems. In 16th USENIX Security Symposium (USENIX
Security 07), Boston, MA, August 2007. USENIX As-
sociation.

[49] Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8):1555–1571,
2019.

[50] Onur Mutlu, Ataberk Olgun, and A Giray Yağlıkcı. Fun-
damentally understanding and solving rowhammer. In
Proceedings of the 28th Asia and South Pacific Design
Automation Conference, pages 461–468, 2023.

[51] Hoda Naghibijouybari, Khaled N Khasawneh, and Nael
Abu-Ghazaleh. Constructing and characterizing covert
channels on gpgpus. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 354–366, 2017.

[52] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian,
and Nael Abu-Ghazaleh. Rendered insecure: Gpu side
channel attacks are practical. In Proceedings of the 2018

ACM SIGSAC conference on computer and communica-
tions security, pages 2139–2153, 2018.

[53] Cristóbal A. Navarro, Nancy Hitschfeld-Kahler, and
Luis Mateu. A survey on parallel computing and its
applications in data-parallel problems using gpu archi-
tectures. Communications in Computational Physics,
15(2):285–329, 2014.

[54] Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
(mis) managed: A novel tlb-based covert channel on
gpus. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, pages 872–
885, 2021.

[55] Benchmark without Slow-down. https://openbenc
hmarking.org/result/2409051-NE-WITHOUTSL23.

[56] NVIDIA. Parallel Thread Execution. https://docs.n
vidia.com/cuda/parallel-thread-execution/.

[57] NVIDIA. A100 Datasheet. https://www.nvidia.c
om/content/dam/en-zz/Solutions/Data-Center/
a100/pdf/nvidia-a100-datasheet-nvidia-us-2
188504-web.pdf, 2022.

[58] NVIDIA. GeForce RTX 40 series. https://www.nv
idia.com/en-us/geforce/graphics-cards/40-s
eries/, 2023.

[59] NVIDIA. MIG User Guide. https://docs.nvidia.
com/datacenter/tesla/mig-user-guide/index
.html, 2024.

[60] NVIDIA. NVIDIA CUDA samples. https://github
.com/NVIDIA/cuda-samples, 2024.

[61] NVIDIA. Multi-Process Service. https://docs.nvi
dia.com/deploy/pdf/CUDA_Multi_Process_Serv
ice_Overview.pdf, June, 2024.

[62] Openbenchmarking. Blender benchmark. https://op
enbenchmarking.org/test/pts/blender.

[63] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadha-
van, and Angelos D Keromytis. The spy in the sandbox:
Practical cache attacks in javascript and their implica-
tions. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1406–1418, 2015.

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in

https://www.mouser.com/datasheet/2/671/mict_s_a0009021659_1-2290912.pdf?srsltid=AfmBOopCWmIZWGKhUzM747iQaJ-eXJ-TKUQpQcp_mt0vp7DXNntih6qT
https://www.mouser.com/datasheet/2/671/mict_s_a0009021659_1-2290912.pdf?srsltid=AfmBOopCWmIZWGKhUzM747iQaJ-eXJ-TKUQpQcp_mt0vp7DXNntih6qT
https://www.mouser.com/datasheet/2/671/mict_s_a0009021659_1-2290912.pdf?srsltid=AfmBOopCWmIZWGKhUzM747iQaJ-eXJ-TKUQpQcp_mt0vp7DXNntih6qT
https://www.mouser.com/datasheet/2/671/mict_s_a0009021659_1-2290912.pdf?srsltid=AfmBOopCWmIZWGKhUzM747iQaJ-eXJ-TKUQpQcp_mt0vp7DXNntih6qT
https://openbenchmarking.org/result/2409051-NE-WITHOUTSL23
https://openbenchmarking.org/result/2409051-NE-WITHOUTSL23
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://openbenchmarking.org/test/pts/blender
https://openbenchmarking.org/test/pts/blender


Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019.

[65] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. {DRAMA}: Exploit-
ing {DRAM} addressing for {Cross-CPU} attacks. In
25th USENIX security symposium (USENIX security
16), pages 565–581, 2016.

[66] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,
and Abhishek Bhattacharjee. Colt: Coalesced large-
reach tlbs. In 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 258–269.
IEEE, 2012.

[67] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 199–212, 2009.

[68] Anish Saxena, Saurav Mathur, and Moinuddin Qureshi.
Rubix: Reducing the overhead of secure rowhammer
mitigations via randomized line-to-row mapping. In
Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, page
1014–1028, New York, NY, USA, 2024. Association for
Computing Machinery.

[69] Mark Seaborn and Thomas Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. Black Hat,
15(71):2, 2015.

[70] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust website fingerprinting through the cache
occupancy channel. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 639–656, Santa Clara,
CA, August 2019. USENIX Association.

[71] Benchmark with Slow-down. https://openbenchmar
king.org/result/2408257-NE-TEST1322675.

[72] Standard Performance Evaluation Corporation. Spec
cpu2017 benchmark suite, 2017.

[73] Nikko Ström. Scalable distributed dnn training using
commodity gpu cloud computing. In Interspeech 2015,
2015.

[74] Xiaodan Serina Tan, Pavel Golikov, Nandita Vijayku-
mar, and Gennady Pekhimenko. Gpupool: A holistic
approach to fine-grained gpu sharing in the cloud. In
Proceedings of the International Conference on Par-
allel Architectures and Compilation Techniques, pages
317–332, 2022.

[75] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over the
network and defenses. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pages 213–226,
2018.

[76] Guillaume Thomas-Collignon and Vishal Mehta. Op-
timizing CUDA Applications for NVIDIA A100 GPU.
https://developer.download.nvidia.com/vide
o/gputechconf/gtc/2020/presentations/s2181
9-optimizing-applications-for-nvidia-amper
e-gpu-architecture.pdf, 2020. S21819 GTC 2020.

[77] Victor Van Der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic rowhammer attacks on mobile
platforms. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 1675–1689, 2016.

[78] Victor van der Veen and Ben Gras. Dramaqueen: Re-
visiting side channels in dram. In Third Workshop on
DRAM Security (DRAMSec). DRAMSec, 2023.

[79] Jan Verschelde. Memory Coalescing Techniques. http
s://homepages.math.uic.edu/~jan/mcs572f16/m
cs572notes/lec35.html, 2016.

[80] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mo-
hammad Abdullah Al Faruque. Leaky dnn: Stealing
deep-learning model secret with gpu context-switching
side-channel. In 2020 50th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 125–137. IEEE, 2020.

[81] Mochi Xue, Jiacheng Ma, Wentai Li, Kun Tian, Yaozu
Dong, Jinyu Wu, Zhengwei Qi, Bingsheng He, and Haib-
ing Guan. Scalable gpu virtualization with dynamic
sharing of graphics memory space. IEEE Transactions
on Parallel and Distributed Systems, 29(8):1823–1836,
2018.

[82] Yicheng Zhang, Ravan Nazaraliyev, Sankha Baran
Dutta, Nael Abu-Ghazaleh, Andres Marquez, and Kevin
Barker. Beyond the bridge: Contention-based covert and
side channel attacks on multi-gpu interconnect. arXiv
preprint arXiv:2404.03877, 2024.

[83] Zhenkai Zhang, Tyler Allen, Fan Yao, Xing Gao, and
Rong Ge. TunneLs for Bootlegging: Fully Reverse-
Engineering GPU TLBs for Challenging Isolation Guar-
antees of NVIDIA MIG. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 960–974, 2023.

https://openbenchmarking.org/result/2408257-NE-TEST1322675
https://openbenchmarking.org/result/2408257-NE-TEST1322675
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://homepages.math.uic.edu/~jan/mcs572f16/mcs572notes/lec35.html
https://homepages.math.uic.edu/~jan/mcs572f16/mcs572notes/lec35.html
https://homepages.math.uic.edu/~jan/mcs572f16/mcs572notes/lec35.html


[84] Zhenkai Zhang, Kunbei Cai, Yanan Guo, Fan Yao, and
Xing Gao. Invalidate+Compare: A Timer-Free GPU
cache attack primitive. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 2101–2118, Philadel-
phia, PA, August 2024. USENIX Association.

[85] Zirui Neil Zhao, Adam Morrison, Christopher W
Fletcher, and Josep Torrellas. Everywhere all at once:
Co-location attacks on public cloud faas. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 1, pages 133–149, 2024.

11 Ethics Considerations

All experiments in this paper were conducted on private test-
bed in the lab, ensuring that no harm was inflicted on other
users, nor were they put at any risk. No users were affected
by our experiments. We disclosed our findings and code to
NVIDIA and DRAM manufacturers, including Samsung, Mi-
cron, and SK Hynix.

12 Compliance with Open Science Policy

We commit to sharing the code and data utilized and described
in this paper once private disclosure with the vendors has been
completed. We fully comply with the Open Science Policy
and recognize the importance of demonstrating transparency,
reproducibility, and accessibility in our results. We made the
artifacts available at this Zenodo repository. The readers may
refer to the README files for additional details on how to
reproduce results.

Appendix

Figure 9 presents GDDR hashing functions on the RTX 4060
and RTX 3070 Ti. Figure 10 shows RFM timing leakages for
various websites and videos. Table 5 defines the 12 statistical
features used, and Table 6 lists all 20 benchmarks in our side-
channel attack.

Figure 9: DRAM hashing functions for GDDR on the RTX
4060 and RTX 3070 Ti.

Table 5: Definitions of statistical features used in this work.
Features Description
mean Mean of all values.
max Maximum of all values.
min Minimum of all values.
median Median of all values.
std Standard deviation.
var Variance.
range Difference of maximum and minimum.
sum Sum of all values.
count_am Count of observations that exceed the mean.
percent_25 25th percentile value.
percent_75 75th percentile value.
iqr_val Interquartile range.

Memory controller behaviour. We have seen that the
DRAMA covert channel becomes very ineffective on tested
NVIDIA GPUs. The success of this covert channel depends
upon the row buffer being open until the other side of the com-
munication channel accesses its address in the DRAM bank.
If the row buffer is closed before the other side senses it, then
he will not be able to measure the difference between open
and closed row buffer; rather observe an empty row buffer.
To analyze how much time is needed to catch the row buffer
open, we carry out the following experiment, and Figure 11
shows the results of this analysis. The experiment conducts
two memory accesses to the same memory bank and mea-
sures the amount by which a row buffer miss/conflict can be
differentiated from all access times. Also, we increase the
delay between these memory accesses. When the delay is
zero, the accesses are back-to-back, meaning we do not try
to put any delay. Up to about 40 clock cycles of delay, the
difference caused by a row buffer conflict is at its maximum.
However, as the delay increases, the conflict difference de-
creases, eventually hitting zero after 94 clock cycles. This
indicates that after approximately 100 clock cycles, the row
buffer is closed, and any subsequent access to the bank will
hit an empty row buffer. Considering high global memory
latency, getting a row conflict for the covert channel becomes
difficult, therefore degrading the channel.

This mechanism is logical in GPUs since NVIDIA GPUs
support coalescing memory access [79]. A warp can access
a 128-byte (corresponding to a sector) aligned memory uti-
lizing all 32 threads. In this case, all threads request data in
a back-to-back fashion, hitting the row. Once the requests
have been served and there is no other pending request hitting
the same row, it is good to close the row buffer to avoid any
PRECHARGE overhead.

https://zenodo.org/records/14751122


(a) linkedin.com (b) facebook.com (c) taobao.com

(d) video_6 (e) video_9 (f) video_16

Figure 10: The RFM leakages from websites and videos exhibit distinct patterns. The y-axis represents the sum of all bank access
times on the Jetson’s LPDDR5, while the x-axis corresponds to the sample indices.

Table 6: CUDA Benchmarks evaluated in Section 5.
Benchmarks Description
srad Speckle Reducing Anisotropic Diffusion (SRAD) is a diffusion algorithm that removes image speckles.
radixSort Radix sort algorithm sorts integers by processing digits from least to most significant.
scan Scan is an optimized CUDA implementation of parallel prefix sum.
mergeSort Merge sort algorithm recursively divides a list and merges the sorted parts.
transpose Transpose is the CUDA implementation of matrix transpose.
needle Needleman-Wunsch (Needle) is a global optimization method used in DNA sequence alignment.
simpleStreams It utilizes CUDA streams to concurrently execute kernels while transferring data between the host and GPU device.
vectorAdd VectorAdd computes the element-wise sum of two vectors.
simpleCUDAGraph It shows the process of creating, instantiating, and launching CUDA Graphs utilizing the Graphs and Stream Capture APIs.
reduction A parallel reduction algorithm that calculates the sum of a large array of values.
backprop Backprop is a three-layer neural network used in face recognition.
gaussian Gaussian Elimination solves systems of linear equations by transforming the matrix to row echelon form.
bf16TensorCoreGemm It illustrates GEMM computation with the __nv_b f loat16 data type using the Warp Matrix Multiply and Accumulate (WMMA) API.
matrixMul MatrixMul multiplies two matrices to produce a third matrix as the result.
graphMemoryFootprint GraphMemoryFootprint shows how graph memory nodes reuse virtual addresses and physical memory.
dwt2d 2D Discrete Wavelet Transform (2D DWT) performs a 2-D discrete wavelet transform on an image.
graphMemoryNodes It illustrates how memory is allocated and freed within CUDA graphs, utilizing the Graph and Stream Capture APIs.
conjugateGradient-
CudaGraphs It implements a conjugate gradient solver on the GPU, utilizing CUBLAS and CUSPARSE library functions.

histogram Histogram illustrates an optimized implementation of 64-bin and 256-bin histograms.
convolutionSeparable ConvolutionSeparable applies a separable convolution filter to a 2D signal using a Gaussian kernel.

Figure 11: Memory controller timeout interval analysis on the
RTX 3070 Ti. The y-axis represents the amount of conflict
indicating a row buffer miss/conflict, while the x-axis shows
the delay between two memory accesses.

Figure 12: RFM Leakege in Jetson Orin AGX.


	Introduction
	Background and Threat Model
	GDDR
	Refresh Management
	Threat Model

	Attack Overview and Challenges
	Virtual-to-Physical Address Translation
	Bypassing GPU Caches
	DRAM Bank Address Translation
	Characterizing RFM Leakage

	Covert Channel Attack
	Covert Channel Design
	Covert Channel Evaluation

	Side Channel Attack
	Attack 1: Application Fingerprinting
	Attack 2: 3D Rendering Fingerprinting

	GPU-to-CPU Attacks on LPDDR5
	Slow-down Attack
	Potential Mitigation
	Related Work
	Concluding Remarks
	Ethics Considerations
	Compliance with Open Science Policy

