EDUCATION

Ph.D candidate in Electrical Engineering University of California, Riverside	09/2021 - present
M.S. in Computer Engineering University of California, Irvine	09/2018 - 06/2021
B.S. in Electrical Engineering and Automation Sichuan University	09/2014 - 06/2018

WORK EXPERIENCE

Associate Instructor | University of California, Riverside

06/2024 - 09/2024

Lecturing for upper-division undergraduate class CS 153 - Design of Operating Systems

Research Intern | Pacific Northwest National Laboratory

06/2023 - 09/2023

Research on micro-architecture security in multi-GPU systems (NVLink)

RESEARCH AREA

Hardware Security; AR/VR Security; Side-channel Attacks; Machine Learning

TECHNICAL SKILLS

Programming Languages & Software: C++, Python, CUDA, TensorFlow, MATLAB, PyTorch, Verilog, Xilinx Vivado, Unity, Unreal Engine

Selected Courses: Autonomous Cyber-Physical Systems (A+), GPU Architecture & Parallel Programming (A), Advanced Operating Systems (A), Pattern Recognition (A), Advanced Computer Vision (A), Advanced System Security (A), Machine Learning & Artificial Intelligence (A)

SELECTED PROJECTS (GOOGLE SCHOLAR)

Research Assistant | University of California, Riverside, Riverside, CA

09/2021 - present

Acoustic injection attacks targeting IMU sensors in AR/VR systems (under review in Oakland'25)

- Revealed the vulnerability of accelerometers and gyroscopes to resonant frequencies, allowing attackers to manipulate IMU outputs and mislead AR/VR user experiences.
- Demonstrated acoustic injection attacks that target IMU sensors in AR/VR systems, significantly impacting SLAM performance and device accuracy.

Attacking Linux file system via system call Syncfs (under review in Oakland'25)

- Reverse-engineered the system call *syncfs* and identified how it leaks victim's I/O operations.
- Conducted fingerprinting attacks that classify websites, videos, and apps accessed by the victim, achieving high accuracy in both closed and open-world scenarios on Linux and Android.

Attacking NVIDIA GPUs using RFM Rowhammer Mitigation (under review in Usenix Security'25)

- Reverse-engineered the RFM operation and identified opportunities for timing leakage.
- Demonstrated a series of RFM leakage-based covert channel and side-channel attacks on NVIDIA GPUs.

Shared State Attacks in Multi-User Augmented Reality Applications (Usenix Security'24)

- Demonstrated a series of innovative and robust attacks on multiple AR frameworks with shared states, focusing on three publicly accessible frameworks from Meta and Google.
- Proposed several potential mitigation strategies that help enhance the security of multi-user AR applications.

AR/VR typing inference using head motion tracking (Usenix Security'23)

- Developed a system named TyPose that autonomously deduces words and characters typed by users from their head motion sensor data.
- Collected tens of user traces depicting AR/VR typing behavior and conducted a thorough evaluation of our attack on these traces, achieving a high level of accuracy.

Side-channel attacks on AR/VR systems via Rendering Performance Counters (Usenix Security'23)

• Introduced a taxonomy outlining potential targets and sources of leakage for software-based side-channel attacks on AR/VR systems.

• Demonstrated five end-to-end side-channel attacks across three distinct AR/VR-specific attack scenarios, achieving a high degree of accuracy.

Research Intern | Pacific Northwest National Laboratory, Richland, WA

06/2023 - 09/2023

Covert and Side Channel Attacks on NVIDIA's NVLink (SEED'24, under review in ISCA'25)

- Reverse-engineered timing and performance counters of NVIDIA Multi-GPU's NVLink interconnect.
- Performed covert and side-channel attacks on the NVIDIA DGX system and Google Compute Platform.

Accuracy-Constrained Efficiency Optimization for Detecting Drainage Crossing (SC Workshop'23)

- Demonstrated the efficacy of resource-aware Neural Architecture Search (NAS) in refining the hyperparameters of SPP-Net, leading to significant enhancements in inference efficiency.
- Performed comprehensive profiling of the drainage crossing detection models on GPU systems, pinpointing the performance bottlenecks unique to single GPU configurations.

Research Assistant | University of California, Irvine, Irvine, CA

08/2018 - 06/2021

Remote Side-Channel Attack on FPGA to Steal Neural Network Structure (IEEE TIFS'21, FPGA'21)

- Developed a novel ring oscillator (RO)-based remote power attack on FPGAs to steal machine learning models.
- Employed a range of classifiers to effectively recover the hyperparameters of the victim model from sidechannel leakages.

DNN Model Stealing Attack via GPU Context-Switching Side-Channel (DSN'20)

- Developed a novel GPU side-channel based on context-switching penalties.
- Implemented LSTM-based inference models to identify the structural secrets of a group of CNN models.

PRESENTATIONS AND TALKS

- "Beyond the Bridge: Contention-Based Covert and Side Channel Attacks on Multi-GPU Interconnect" at IEEE SEED 2024, Orlando, Florida, USA, May, 2024
- "Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Detecting Drainage Crossing Locations" at SC'23 Workshop, Denver, CO, USA, November, 2023
- "It's all in your head(set): side-channel attacks on augmented reality systems" at USENIX Security'23, Anaheim, CA, USA, August, 2023
- "Poster: Stealing Neural Network Structure through Remote FPGA Side-channel Analysis" at FPGA'21, virtual, February 2021
- "Leaky DNN: Stealing Deep-Learning Model Secret with GPU Context-Switching Side-Channel" at DSN'20, virtual, June 2020

MEDIA COVERAGE

Side channel attacks on AR/VR headset via rendering performance counters

- Reported by UCR News, ZME Science, Tech Xplore, Analytics Insight, Gillett News, 2023
- AR/VR keylogging from user head motions
- Reported by UCR News, Fagen Wasanni, Analytics Insight, Game Is Hard, Knowridge, Inside, 2023

TEACHING EXPERIENCE

Associate Instructor at University of California, Riverside

• Design of Operating Systems (CS 153) – Syllabus

Summer 2024

Winter 2019

Teaching Assistant at University of California, Irvine

 Organization of Digital Computers (EECS 112) 	Spring 2021
 Next Generation Search Systems (CS 125) 	Winter 2021
Object Oriented System & Programming (EECS 40)	Fall 2020
System Software (EECS 111)	Spring 2020

Continuous-Time Signals and Systems (EEC S150)

HONORS AND AWARDS

• International Peer Educator Training Program Certification (IPTPC) Level 1	2023
Student Travel Grant for IEEE Symposium on Security and Privacy	2021,2022
Student Travel Grant for ACM Conference on Computer and Communications Security	2021
Student Travel Grant for USENIX Security Symposium	2021
Dean's Distinguished Fellowship Award (UC Riverside)	2021
Sichuan University Scholarship (China)	2014-2018